Stat 515: Introduction to Statistics

Chapter 7

Confidence Intervals

- Often, we do not know the **population parameter**, μ , ρ or σ_x
- We use our sample statistics, \overline{x} , \widehat{p} , s_x to make inference on the population parameter, μ , ρ or σ_x

Confidence Intervals

• First, we will consider an interval estimate which we call a confidence interval

(This is our plus/minus from chapter 1)

 $point\ estimate\ \pm\ margin\ of\ error$

= point estimate ± (confidence coefficient) * (Standard Error)

Telling Which Parameter We're After

- As statisticians, or data scientists, it's our job to hear a problem and decide what we're after
 - We call the parameter of interest the target parameter

Parameter	Point Estimate	Key Phrase	Type of Data
μ	\overline{x}	Mean, Average	Quantitative
ρ	\widehat{p}	Proportion, percentage, fraction, rate	Qualitative (Categorical)
σ^2	S_{χ}^2	Variance, variability, spread	Quantitative

Confidence Intervals for Population Proportions on YouTube

• Intro:

– <u>https://www.youtube.com/watch?v=3ReWri_jh3M</u>

Recall Sampling Distributions for Sampling Proportions

- Recall: the mean of the sampling distribution for a sample proportion will always equal the population proportion: $\mu_{\widehat{p}} = \rho$
- The standard error, the standard deviation of the sample proportion, is:

$$\sigma_{\widehat{p}} = \sqrt{\frac{\rho(1-\rho)}{n}}$$

Confidence Intervals: Step One

<u>Assumptions:</u>

- 1. Data must be obtained through randomization
- 2. We **MUST** make sure that $n\hat{p} \ge 15$ and $n(1-\hat{p}) \ge 15$. This ensures that \hat{p} follows a bell shaped distribution
 - Recall Chapter 4 and the shape of the binomial dist.

• Recall: \hat{p} is our **point-estimate** for the population proportion

• Recall we consider $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ when we don't know ρ for the standard error as \hat{p} can estimate the value of ρ

- \hat{p} is our **point-estimate** for the population proportion
 - Our 'best' guess for the true population proportion, ρ , is our sample proportion, \hat{p} .

•
$$Z_{\left(1-\frac{\alpha}{2}\right)}\sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$
 is our margin of error

• $z_{1-\frac{\alpha}{2}}$ is the **confidence coefficient** and is the z value such that $P\left(Z < z_{\left(1-\frac{\alpha}{2}\right)}\right) = 1 - \frac{\alpha}{2}$

•
$$\sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$$
 is the **estimated standard deviation**

- The most common values of Z are listed below
 - Level of confidence = $(1-\infty) * 100\%$
 - Error Probability = \propto = 1- Level of confidence

Confidence	Error Probability (\propto)	$z_{\left(1-rac{lpha}{2} ight)}$ From Table	$Z_{\left(1-\frac{lpha}{2} ight)}$ From R
.9	.1	1.645	1.644854
.95	.05	1.96	1.959964
.99	.01	2.58	2.57829

- Our interval will get larger when the margin of error increases
 - 1) When we increase confidence \rightarrow increase $z \rightarrow$ widen interval
 - 2) When we decrease confidence \rightarrow decrease z \rightarrow narrow interval

•
$$Z_{\left(1-\frac{\alpha}{2}\right)}\sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$
 is our margin of error

- As n increases, the margin of error decreases causing the width of the confidence interval to narrow
- As n decreases, the margin of error increases causing the width of the confidence interval to grow wider

Confidence Intervals: Margin of Error

•
$$Z_{\left(1-\frac{\alpha}{2}\right)}\sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$
 is our margin of error

- As the confidence level decreases, z decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
- As the confidence level increases, z increases
 causing the margin of error to increase, causing
 the width of the confidence interval to grow wider

- A fishing metaphor:
 - As n increases \rightarrow confidence interval narrows
 - − As n decreases → confidence interval widens
 - Think about fishing in a pond with a net. If there are more fish you can use a smaller net to catch the fish.
 - In our case, when our sample size is larger we can use a smaller interval to catch our parameter.

- A fishing metaphor:
 - Increase confidence \rightarrow confidence interval narrows
 - Decrease confidence \rightarrow confidence interval widens

- Think about fishing in a pond with a net. We want to be more certain that we'll catch a fish we need a bigger net.
- In our case, when we increase confidence to be more certain that we'll catch the parameter, we need a bigger interval.

Confidence Intervals Bounds

$$\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$

Lower Bound =
$$\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$$

Upper Bound = $\hat{p} + Z_{\frac{\alpha}{2}} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$

Confidence Intervals Bounds

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$

"We are <u>--%</u> confident that the true population proportion, ρ , is between the <u>lower bound</u> and <u>upper bound</u>."

• We choose our values such that

- Our **point estimate** is the mean, the 50th percentile

– Our **lower bound** is the
$$\frac{\alpha^{\text{th}}}{2}$$
 percentile

– Our **upper bound** is the $1-\frac{\alpha^{\text{th}}}{2}$ percentile

How We Found the Common Z's: 90%

- For a 90% confidence interval upper bound, we need to find the z with a percentile of $1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .90}{2} = 1 - \frac{.10}{2} = .9500$
- If we look this up in the z-table we see that a z-score between 1.64 or 1.65 gives us a value very close to .9500 → 1.645

How We Found the Common Z's: 90%

- For a 90% confidence interval upper bound, we need to find the z with a percentile of $1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .90}{2} = 1 - \frac{.10}{2} = .9500$
- To look this up in R: qnorm(.9500,0,1)=1.644854

How We Found the Common Z's: 90%

- Lower Bound: If we look this up in the z-table we see that a z-score between -1.65 or -1.64 gives us a value very close to .0500
- **Upper Bound:** If we look this up in the z-table we see that a z-score between 1.65 or 1.64 gives us a value very close to .9500
- Since it's in the middle we average 1.64 and 1.65
- This is why we have plus or minus z=1.645 for a 90% confidence interval

How We Found the Common Z's: 95%

- For a 95% confidence interval upper bound, we need to find the z with a percentile of $1 \frac{\alpha}{2} = 1 \frac{1 confidence}{2} = 1 \frac{1 .95}{2} = 1 \frac{.05}{2} = .9750$
- If we look this up in the z-table we see that a zscore of 1.96 gives us a value very close to .9750

How We Found the Common Z's: 95%

- For a 95% confidence interval upper bound, we need to find the z with a percentile of $1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .95}{2} = 1 - \frac{.05}{2} = .9750$
- To look this up in R: qnorm(.9750,0,1)=1.959964

How We Found the Common Z's: 95%

- Lower Bound: If we look this up in the z-table we see that a z-score of -1.96 gives us a value very close to .0250
- **Upper Bound:** If we look this up in the z-table we see that a z-score of 1.96 gives us a value very close to .9750

• This is why we have plus or minus z=1.96 for a 95% confidence interval

How We Found the Common Z's: 99%

- For a 99% confidence interval upper bound, we need to find the z with a percentile of $1 \frac{\alpha}{2} = 1 \frac{1 confidence}{2} = 1 \frac{1 .99}{2} = 1 \frac{.01}{2} = .9950$
- If we look this up in the z-table we see that a zscore of 2.58 gives us a value very close to .9950

How We Found the Common Z's: 99%

- For a 99% confidence interval upper bound, we need to find the z with a percentile of $1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .99}{2} = 1 - \frac{.01}{2} = .9950$
- To look this up in R: qnorm(.9500,0,1)=2.575829

How We Found the Common Z's: 99%

- Lower Bound: If we look this up in the z-table we see that a z-score of -2.58 gives us a value very close to .0500
- **Upper Bound:** If we look this up in the z-table we see that a z-score of 2.58 gives us a value very close to .9500

• This is why we have plus or minus z=2.58 for a 99% confidence interval

How We Find an Uncommon Z: 98%

- For a 98% confidence interval lower bound, we need to find the z with a percentile of $1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .98}{2} = 1 - \frac{.02}{2} = .9900$
- If we look this up in the z-table we see that a z-score of 2.33 gives us a value very close to .9900

How We Found the Common Z's: 98%

- For a 98% confidence interval upper bound, we need to find the z with a percentile of $1 - \frac{\alpha}{2} = 1 - \frac{1 - confidence}{2} = 1 - \frac{1 - .98}{2} = 1 - \frac{.02}{2} = .9900$
- To look this up in R: qnorm(.9900,0,1)=2.326348

How We Found the Common Z's: 98%

- Lower Bound: If we look this up in the z-table we see that a z-score of -2.33 gives us a value very close to .0100
- **Upper Bound:** If we look this up in the z-table we see that a z-score of 2.33 gives us a value very close to .9900

• This is why we have plus or minus z=2.33 for a 98% confidence interval

- A random sample of MLB home games showed that the home teams **won 1335 of 2429 games.**
- Our sample proportion = $\hat{p} = \frac{1335}{2429} = .5496$
- We should know this is a proportion problem because we're considering a qualitative (categorical) random variable
- Find the 95% confidence interval for the population proportion

- Step One:
- Check Assumptions:
 - $n * \hat{p} = 2429 * .5496 = 1334.9784 \ge 15$
 - $n * (1 \hat{p}) = 2429 * .4504 = 1094.0216 \ge 15$
 - Thus, it is safe to assume the distribution of \hat{p} has a bell shaped distribution
 - The data is from a random sample

• Step Two:

• 95% CI:

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$

$$5496 \pm (1.96) \sqrt{\frac{.5496(.4504)}{2429}}$$

$$= (.5298, .5694)$$

• We are 95% confident that the **true population proportion** of home team wins **is between** 52.98 and 56.94 percent.

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- 95% CI:

(.5298, .5694)

- We see here that there is a small home field advantage because all of the values in our 95% CI are above 0.5.
 - We know that 0.5 is interesting because it means more than half the time or most

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- 99% CI:

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}}$$

$$.549 \pm (2.58) \sqrt{\frac{.549(.451)}{2429}} = (.5236, .5756)$$

 We are 99% confident that the true population proportion of home team wins is between 52.36 and 57.56 percent.

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- 99% CI:

(.5236, .5756)

 Still, we see here that there is a small home field advantage but we note the interval is larger

Wilson's Adjustment for Estimating ρ

• Wilson's Adjustment is a nice trick to 'correct' our confidence interval when n isn't extremely large and performs poorly when ρ is near 0 or 1

$$\tilde{p} \pm \frac{z_{\alpha}}{2} \sqrt{\frac{\left(\tilde{p}(1-\tilde{p})\right)}{n}}$$

• Where $\tilde{p} = \frac{x+2}{n+4}$ is the adjusted proportion of observations

- Let's complete our previous example about MLB home games with Wilson's Adjustment this time
 - The only difference here will be how we calculate the sample proportion: $\tilde{p} = \frac{x+2}{n+4}$ instead of $\hat{p} = \frac{x}{n}$
 - Note: we shouldn't see a drastic change because we aren't in the case where n isn't extremely large and performs poorly when ρ is near 0 or 1

- A random sample of MLB home games showed that the home teams **won 1335 of 2429 games.**
- Our sample proportion = $\tilde{p} = \frac{1335+2}{2429+4} = .5495$
- We should know this is a proportion problem because we're considering a qualitative (categorical) random variable
- Find the 95% confidence interval for the population proportion

- Step One:
- Check Assumptions:
 - $n * \hat{p} = 2429 * .5496 = 1334.9784 \ge 15$
 - $n * (1 \hat{p}) = 2429 * .4504 = 1094.0216 \ge 15$
 - Thus, it is safe to assume the distribution of \hat{p} has a bell shaped distribution
 - The data is from a random sample

- Step Two:
- 95% CI:

$$\widetilde{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(\widetilde{p}(1-\widetilde{p})\right)}{n}}$$

$$.5495 \pm (1.96) \sqrt{\frac{.5495(.4505)}{2429}}$$

$$= (.5297, .5693)$$

• We are 95% confident that the **true population proportion** of home team wins **is between** 52.97 and 56.93 percent.

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- 95% CI:

(.5297, .5693)

- We see here that there is a small home field advantage because all of the values in our 95% CI are above 0.5.
 - We know that 0.5 is interesting because it means more than half the time or most

Example in R

Below is a function you can load into R:

```
prop.int<-function(conf.level, x, n, Wilson=FALSE){</pre>
 if(Wilson){
   phat=(x+2)/(n+4)
 }else{
   phat=x/n
 }
 z.crit = qnorm(1-(1-conf.level)/2);
 std.error = sqrt(phat*(1-phat)/n);
 MOE=z.crit*std.error;
 c(phat-MOE, phat+MOE)
}
```

Example in R

 You can call the function as below which will provide the 95% confidence interval for a population proportion from a sample where 1335 of 2429 games were won from the home team:

> prop.int(.95, 1335, 2429,Wilson=FALSE) OR with Adjustment prop.int(.95, 1335, 2429,Wilson=TRUE)

Determining the Sample Size

• Say we want to set sampling error at SE with $100(1 - \alpha)\%$ confidence:

<u>Set:</u> $Z_{\left(1-\frac{\alpha}{2}\right)}\sqrt{\frac{\left(\hat{p}(1-\hat{p})\right)}{n}} = SE$ <u>Solve for n:</u> $n = \frac{\left(z_{\left(1-\frac{\alpha}{2}\right)}^{2}\left(\hat{p}(1-\hat{p})\right)\right)}{SE^{2}}$

Note: n is maximized for \hat{p} =.5

Recall Sampling Distributions for Sampling Means

The mean of the sampling distribution for a sample mean

 $\mu_{\bar{x}}$

- = the mean of all possible sample means = μ_x = the population mean
- The standard error, the standard deviation of all sample means, is:

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$$

Confidence Intervals For the Population Mean

- When we talk about confidence intervals for the population mean we have two approaches
 - 1. When we know σ_{χ} (we are rarely in this case)
 - 2. When we don't know σ_x

Confidence Intervals When We Know σ_{χ}

• We use our sample means to make inference on the population mean

$$\bar{x} \pm z_{1-\frac{\alpha}{2}} \left(\frac{\sigma_x}{\sqrt{n}} \right)$$

• \bar{x} is our **point-estimate** for the population mean

•
$$z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{\chi}}{\sqrt{n}}\right)$$
 is our margin of error

Confidence Intervals When We Know σ_{χ}

- \bar{x} is our **point-estimate** for the population mean
 - Our 'best' guess for the true population , mean is our sample mean

Confidence Intervals: Margin of Error When We Know σ_x

- $Z_{\frac{\alpha}{2}}\left(\frac{\sigma_x}{\sqrt{n}}\right)$ is our margin of error
 - As n increases, $\left(\frac{\sigma_x}{\sqrt{n}}\right)$ decreases, causing the margin of error to decrease causing the width of the confidence interval to narrow
 - As n decreases, $\left(\frac{\sigma_x}{\sqrt{n}}\right)$ increases, causing the margin of error to increase causing the width of the confidence interval to widen

Confidence Intervals: Margin of Error When We Know σ_x

- $Z_{\frac{\alpha}{2}}\left(\frac{\sigma_{\chi}}{\sqrt{n}}\right)$ is our margin of error
 - As the confidence level decreases, z decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
 - As the confidence level increases, z increases
 causing the margin of error to increase, causing
 the width of the confidence interval to grow wider

Confidence Intervals Bounds When We Know σ_{χ} Lower Bound = $\bar{x} - Z_{\frac{\alpha}{2}} \left(\frac{\sigma_{\chi}}{\sqrt{n}} \right)$ Upper Bound = $\bar{x} + Z_{\frac{\alpha}{2}} \left(\frac{\sigma_{\chi}}{\sqrt{n}} \right)$

We are --% confident that the true population mean, μ_{χ} , is between the **lower** and **upper** bound.

Note: there's an incredible likeliness to confidence intervals for proportions

Confidence Intervals Bounds When We Know σ_x - R code Below is a function you can load into R:

z.int<-function(conf.level, xbar, sigma, n){
 z.crit = qnorm(1-(1-conf.level)/2);
 std.error = sigma/sqrt(n);
 MOE=z.crit*std.error;
 c(xbar-MOE, xbar+MOE)</pre>

Confidence Intervals Bounds When We Know σ_x - R code

 You can call the function as below which will provide the 95% confidence interval for a population mean from a sample of 3 that had mean 5 and known population standard deviation 3:

conf.level=.95 #Confidence Level xbar=5 #Sample Mean sigma=2 #Population Standard Deviation n=3 #Sample Size z.int(conf.level, xbar, sigma, n)

Determining the Sample Size

• Say we want to set sampling error at SE with $100(1 - \alpha)\%$ confidence:

<u>Set:</u> $Z_{\left(1-\frac{\alpha}{2}\right)}\left(\frac{\sigma_X}{\sqrt{n}}\right) = SE$ <u>Solve for n:</u> $n = \frac{\left(z_{\left(1-\frac{\alpha}{2}\right)}^2(\sigma_X)\right)}{SE^2}$ Confidence Intervals Bounds When We Don't Know σ_x

 Now, onto the more realistic situation where we don't know the population standard deviation.

Confidence Intervals When We Don't Know σ_x

• We use our sample means to make inference on the population mean

$$\bar{x} \pm t_{\left(1-\frac{\alpha}{2},n-1\right)}\left(\frac{S_{\chi}}{\sqrt{n}}\right)$$

• \bar{x} is our **point-estimate** for the population mean

•
$$t_{\left(1-\frac{\alpha}{2},n-1\right)}\left(\frac{s_{\chi}}{\sqrt{n}}\right)$$
 is our margin of error $-s_{\chi}$ is the sample standard deviation

Confidence Intervals When We Don't Know σ_x

- \bar{x} is our **point-estimate** for the population mean
 - Our 'best' guess for the true population , mean is our sample mean

Confidence Intervals: Margin of Error When We Don't Know σ_x

•
$$t_{\left(1-\frac{\alpha}{2},n-1\right)}\left(\frac{s_{\chi}}{\sqrt{n}}\right)$$
 is our margin of error

- As n increases, t decreases and $\left(\frac{s_x}{\sqrt{n}}\right)$ decreases, causing the margin of error to decrease causing the width of the confidence interval to narrow

- As n decreases, t increases and $\left(\frac{s_{\chi}}{\sqrt{n}}\right)$ increases, causing the margin of error to increase causing the width of the confidence interval to widen

Confidence Intervals: Margin of Error When We Don't Know σ_x

•
$$t_{\left(1-\frac{\alpha}{2},n-1\right)}\left(\frac{s_{\chi}}{\sqrt{n}}\right)$$
 is our margin of error

- As the confidence level decreases, t decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
- As the confidence level increases, t increases
 causing the margin of error to increase, causing
 the width of the confidence interval to grow wider

Confidence Intervals Bounds When We Don't Know σ_{χ} Lower Bound = $\bar{x} - t_{\left(1 - \frac{\alpha}{2}, n - 1\right)} \left(\frac{s_{\chi}}{\sqrt{n}}\right)$ Upper Bound = $\bar{x} + t_{\left(1 - \frac{\alpha}{2}, n - 1\right)} \left(\frac{s_{\chi}}{\sqrt{n}}\right)$

• We are --% confident that the true population mean, μ_x , is between the lower and upper bounds.

Confidence Intervals When We Don't Know σ_x

- t is based on the t distribution which is a lot like the normal distribution but with fatter tails
 - You can find the correct t-value by finding the cross-hair of degrees of freedom, n-1, and the two tailed alpha
 - <u>http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf</u>

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 95% confidence with n=10
- This means $\alpha = 1 .95 = .05$ and the degrees of freedom = 10 1 = 9

•
$$t_{1-\frac{.05}{2},9} = 2.262$$

cum. prob	t.50	t.75 0.25	t.80	t.85 0.15	t.90	t.95	t.975 0.025	t.99	t.995	t.999	t.9995
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05 B	0.02	0.01	0.002	0.001
df					and the second						100000000000000000000000000000000000000
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
A 9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

Zoom In

cum. prob one-tail two-tails	t.50 0.50 1.00	t.75 0.25 0.50	t .so 0.20 0.40	t.as 0.15 0.30	t.90 0.10 0.20	t.95 0.05 0.10	t.975 0.025 0.05	t.99 0.01 0.02	t.995 0.005 0.01	t.999 0.001 0.002	t.9995 0.0005 0.001
df					and the second						1.
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
A 9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

- A is the degrees of freedom, n-1
- B is the significance level for confidence intervals we look for α in the two-tail row
- C is the t-value associated with the provided degrees of freedom and significance level

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 99% confidence with n=9
- This means $\alpha = 1 .99 = .01$ and the degrees of freedom = 9 1 = 8

•
$$t_{1-\frac{.01}{2},8}=3.355$$

cum. prob one-tail two-tails	t.50 0.50 1.00	t.75 0.25 0.50	t _{.80} 0.20 0.40	t.ss 0.15 0.30	t _{.90} 0.10 0.20	t.95 0.05 0.10	t .975 0.025 0.05	t _{.99} 0.01 0.02	t _{.995} 0.005 0.01	t.999 0.001 B0.002	t.9995 0.0005 0.001
df	141223	0(1201015)	Contractory of the	107 Holders	121303 (13)	1000.84	W18181312	1300040	manie	Section and	Distance Dista
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1 1 1 9	1 415	1.895	2 365	2 998	3 499	4 785	5 408
A 8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	C 4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

	Zoom In													
cum. prob one-tail two-tails	t.50 0.50 1.00	t.75 0.25 0.50	t.so 0.20 0.40	t.ss 0.15 0.30	t _{.90} 0.10 0.20	t.95 0.05 0.10	t.975 0.025 0.05	t.99 0.01 0.02	t.995 0.005 0.01	t.999 0.001 B0.002	t.9995 0.0005 0.001			
df	1000000000	002500651	ALCONTROL 1	NO BOOM	CRAMES OF	State Add	0/432500	1200240	manie	- and the second	pages bey			
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62			
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599			
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924			
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610			
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869			
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959			
7	0.000	0.711	0.896	1 1 1 9	1 415	1.895	2 365	2 998	3,499	4 785	5 408			
A 8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	C 4.501	5.041			
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781			
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587			

• A is the degrees of freedom, n-1

- B is the significance level for confidence intervals we look for α in the two-tail row
- C is the t-value associated with the provided degrees of freedom and significance level

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 90% confidence with n=11
- This means $\alpha = 1 .90 = .10$ and the degrees of freedom = 11 1 = 10

•
$$t_{1-\frac{.10}{2},10} = 1.812$$

cum. prob one-tail two-tails	t.50 0.50 1.00	t.75 0.25 0.50	t.80 0.20 0.40	t.85 0.15 0.30	t _{.90} 0.10 0.20	t.95 0.05 0.10	t.975 0.025 B 0.05	t.99 0.01 0.02	t.995 0.005 0.01	t.999 0.001 0.002	t.9995 0.0005 0.001
df	Contraction of	Alexandra -	and the second second		and the second		10425-041	a potencial	000000000		NONCE INC.
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0 703	0.883	1,100	1.383	1.833	2 262	2 821	3 250	4 297	4 781
A 10	0.000	0.700	0.879	1.093	1.372	1.812	C 2.228	2.764	3.169	4.144	4.587

				Zo	om	n In	_				
cum. prob one-tail two-tails	t.50 0.50 1.00	t.75 0.25 0.50	t.so 0.20 0.40	t.ss 0.15 0.30	t _{.90} 0.10 0.20	t.95 0.05 0.10	t.975 0.025 B 0.05	t.99 0.01 0.02	t _{.995} 0.005 0.01	t.999 0.001 0.002	t.9995 0.0005 0.001
df	No. of Street,	6/15/01/671	Corporate N	No. Second	enter con	and the second	CONFERENCES.	4200260	040320200	100000000000	particular in the
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0 703	0.883	1,100	1.383	1.833	2 262	2 821	3 250	4 297	4 781
A 10	0.000	0.700	0.879	1.093	1.372	1.812	C 2.228	2.764	3.169	4.144	4.587

- A is the degrees of freedom, n-1
- B is the significance level for confidence intervals we look for α in the two-tail row
- C is the t-value associated with the provided degrees of freedom and significance level

Confidence Interval Bounds When We Don't Know σ_x

$$\bar{x} \pm t_{1-\frac{\alpha}{2},n-1}\left(\frac{S_{\chi}}{\sqrt{n}}\right)$$

Lower Bound=
$$\bar{x} - t_{1-\frac{\alpha}{2},n-1}\left(\frac{s_{\chi}}{\sqrt{n}}\right)$$

Upper Bound= $\bar{x} + t_{1-\frac{\alpha}{2},n-1}\left(\frac{s_{\chi}}{\sqrt{n}}\right)$

- Suppose a random sample of 38 yearly average temperature measures in New Haven, CT. Among the sampled years the sample mean temperature was 51.0474 degrees fahrenheit with a sample standard deviation of 1.3112.
- Our sample mean = \bar{x} = 51.0474
- Our sample standard deviation = s_{χ} = 1.3112

- Suppose a random sample of 38 yearly average temperature measures in New Haven, CT. Among the sampled years the sample mean temperature was 51.0474 degrees Fahrenheit with a sample standard deviation of 1.3112.
- Check Assumptions
 - n>30 so it is safe to assume the distribution of x
 is bell-shaped
 - The data is from a random sample

Example

 95% Confidence Interval for population the true population mean yearly average temperature reading in New Haven is:

$$\bar{x} \pm t_{1-\frac{.05}{2},38-1} \left(\frac{S_{x}}{\sqrt{n}}\right)$$
$$= 51.0474 \pm (2.021) \left(\frac{1.3112}{\sqrt{38}}\right)$$
$$(50.61752, 51.47728)$$

Example

(50.61752, 51.47728)

 We are 95% confident that the true population mean yearly average temperature reading in New Haven is between 50.61752 and 51.47728 degrees Fahrenheit Confidence Intervals Bounds When We Don't Know σ_x - R code Below is a function you can load into R:

t.int<-function(conf.level, xbar, sx, n){
 t.crit = qt(1-(1-conf.level)/2,n-1);
 std.error = sx/sqrt(n);
 MOE=t.crit*std.error;
 c(xbar-MOE, xbar+MOE)</pre>

Confidence Intervals Bounds When We Don't Know σ_x - R code

• You can call the function as below which will provide the 95% confidence interval for a population mean from a sample of 38 that had mean 51.0474 and sample standard deviation 1.3112:

conf.level=.95 #Confidence Level xbar=51.0474 #Sample Mean sx=1.3112 #Sample Standard Deviation n=38 #Sample Size t.int(conf.level, xbar, sx, n)

$100(1 - \alpha)\%$ Confidence Interval for σ^2

• Recall:
$$X_{n-1}^2 = \left(\frac{(n-1)s^2}{\sigma_x^2}\right)$$

• If we choose $\chi_{\frac{\alpha}{2}}^2$ such that $P\left(\chi_{n-1}^2 \le \chi_{\frac{\alpha}{2}}^2\right) = \frac{\alpha}{2}$ and $\chi_{1-\frac{\alpha}{2}}^2$ such that $P\left(\chi_{n-1}^2 \ge \chi_{1-\frac{\alpha}{2}}^2\right) = \frac{\alpha}{2}$ then we have $P\left(\chi_{\frac{\alpha}{2}}^2 \le \chi_{n-1}^2 \le \chi_{1-\frac{\alpha}{2}}^2\right) = 1 - \alpha$

$100(1 - \alpha)\%$ Confidence Interval for σ^2

• Recall:
$$X_{n-1}^2 = \left(\frac{(n-1)s^2}{\sigma_x^2}\right)$$

 $P\left(\chi_{\frac{\alpha}{2}}^2 \le \left(\frac{(n-1)s^2}{\sigma_x^2}\right) \le \chi_{1-\frac{\alpha}{2}}^2\right)$
 $= P\left(\frac{1}{\chi_{\frac{\alpha}{2}}^2} \ge \left(\frac{\sigma_x^2}{(n-1)s^2}\right) \ge \frac{1}{\chi_{1-\frac{\alpha}{2}}^2}\right)$
 $= P\left(\frac{1}{\chi_{1-\frac{\alpha}{2}}^2} \le \left(\frac{\sigma_x^2}{(n-1)s^2}\right) \le \frac{1}{\chi_{\frac{\alpha}{2}}^2}\right)$
 $= P\left(\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2} \le \sigma_x^2 \le \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}\right)$

$100(1 - \alpha)\%$ Confidence Interval for σ^2

- Assumptions are:
 - The sample is selected from the target population
 - The population of interest has a relative frequency distribution that is approximately normal

$$\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2} \le \sigma_x^2 \le \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}$$

- We can take the square root of all sides to get a confidence interval for σ

$$\sqrt{\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2}} \le \sigma_x^2 \le \sqrt{\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}}$$

Below is a function you can load into R:

var.int<-function(conf.level, sx, n){
 chisq.critL = qchisq(1-(1-conf.level)/2,n-1);
 chisq.critU = qchisq((1-conf.level)/2,n-1);
 lower=(n-1)*(sx^2)/chisq.critL
 upper=(n-1)*(sx^2)/chisq.critU
 c(lower,upper)</pre>

• You can call the function below which will provide the 95% confidence interval for a population variance from the New Haven temperature data from sample of 38 that had mean 51.0474 and sample standard deviation 1.3112:

conf.level=.95 #Confidence Level
sx=1.3112 #Sample Standard Deviation
n=38 #Sample Size
var.int(conf.level, sx, n)

Answer: (1.142705, 2.877642)

We are 95% confident that the true population variance is between 1.142705 and 2.877642)

Below is a function you can load into R:

sd.int<-function(conf.level, sx, n){
 chisq.critL = qchisq(1-(1-conf.level)/2,n-1);
 chisq.critU = qchisq((1-conf.level)/2,n-1);
 lower=sqrt((n-1)*(sx^2)/chisq.critL)
 upper=sqrt((n-1)*(sx^2)/chisq.critU)
 c(lower,upper)</pre>

• You can call the function below which will provide the 95% confidence interval for a population standard deviation from the New Haven temperature data from sample of 38 that had mean 51.0474 and sample standard deviation 1.3112:

conf.level=.95 #Confidence Level sx=1.3112 #Sample Standard Deviation n=38 #Sample Size sd.int(conf.level, sx, n)

Answer: (1.068974, 1.696361)

We are 95% confident that the true population variance is between 1.068974 and 1.696361

$100(1-\alpha)\%$ Confidence Interval for $\sigma_{\chi}^2 / \sigma_{\nu}^2$ • Recall: $F_{n_x-1,n_y-1} = \frac{\left(\frac{s_x^2}{s_y^2}\right)}{\left(\frac{\sigma_x^2}{\sigma_y^2}\right)}$

• If we choose $F_{\frac{\alpha}{2}}$ such that $P(F_{n_x-1,n_y-1} \leq F_{\frac{\alpha}{2}}) = \frac{\alpha}{2}$ and $F_{1-\frac{\alpha}{2}}^2$ such that $P(F_{n_x-1,n_y-1} \geq F_{1-\frac{\alpha}{2}}) = \frac{\alpha}{2}$ then we have $P(F_{\frac{\alpha}{2}} \leq F_{n_x-1,n_y-1} \leq F_{1-\frac{\alpha}{2}}) = 1 - \alpha$

$100(1 - \alpha)\%$ Confidence Interval for σ_x^2 / σ_y^2

• We can take the square root of all sides to get a confidence interval for σ_x^2 / σ_y^2

$100(1 - \alpha)\%$ Confidence Interval for σ_x^2 / σ_y^2

- Iterpreting the confidence interval $\left(\frac{\sigma_x^2}{\sigma_y^2}\right)$
 - If all values of the interval are bigger than one: $\sigma_x^2 > \sigma_y^2$
 - If all values of the interval are less than one: $\sigma_x^2 < \sigma_y^2$
 - If the interval contains one it is possible that $\sigma_x^2 = \sigma_y^2$

$100(1 - \alpha)\%$ Confidence Interval for σ_x^2 / σ_y^2 - R code

Below is a function you can load into R:

```
F.int<-function(conf.level, sx, nx, sy, ny){
    sratio = sx^2/sy^2
    F.critL = qf(1-(1-conf.level)/2,nx-1,ny-1);
    F.critU = qf((1-conf.level)/2,nx-1,ny-1);
    lower=sratio/F.critL
    upper=sratio/F.critU
    c(lower,upper)
}</pre>
```

$100(1 - \alpha)\%$ Confidence Interval for σ_x^2 / σ_y^2 - R code

• You can call the function below which will provide the 95% confidence interval for the ratios of the population variances from two groups. Say we have a sample, X, of 32 that had sample standard deviation 1.45 and a sample, Y, of 38 that had sample standard deviation 1.57:

```
conf.level=.95 #Confidence Level
sx=1.45 #Sample Standard Deviation
nx=32
sy=1.57 #Sample Standard Deviation
ny=38
F.int(conf.level, sx, nx, sy, ny)
```

Answer: (.4338582,1.7125010) we are 95% confident that the ratio of the population variances is between .4338582 and 1.7125010; 1 is on the confidence interval, so it is possible that the variances are equal.

Summaries

Confidence Intervals

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample 2. $n\hat{p} \ge 15$ And $n(1 - \hat{p}) \ge 15$	\widehat{p}	$z_{\frac{\alpha}{2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}$	$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

• We are --% confident that the true population proportion lays on the confidence interval.

Example in R

Below is a function you can load into R:

```
prop.int<-function(conf.level, x, n, Wilson=FALSE){</pre>
 if(Wilson){
   phat=(x+2)/(n+4)
 }else{
   phat=x/n
 }
 z.crit = qnorm(1-(1-conf.level)/2);
 std.error = sqrt(phat*(1-phat)/n);
 MOE=z.crit*std.error;
 c(phat-MOE, phat+MOE)
}
```

Confidence Intervals known σ_x

Assumptions	Point Estimate	Margin of Error	Margin of Error
 Random Sample n > 30 OR the population is bell shaped 	\overline{x}	$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$	$\bar{x} \pm z_{\frac{\alpha}{2}} \left(\frac{\sigma_x}{\sqrt{n}} \right)$

• We are --% confident that the true population mean lays on the confidence interval.

Confidence Intervals Bounds When We Know σ_x - R code Below is a function you can load into R:

z.int<-function(conf.level, xbar, sigma, n){
 z.crit = qnorm(1-(1-conf.level)/2);
 std.error = sigma/sqrt(n);
 MOE=z.crit*std.error;
 c(xbar-MOE, xbar+MOE)</pre>

Confidence Intervals unknown σ_x

Assumptions	Point Estimate	Margin of Error	Margin of Error
 Random Sample n > 30 OR the population is bell shaped 	\overline{x}	$\sigma_{\bar{x}} = \frac{S_x}{\sqrt{n}}$	$\bar{x} \pm t_{1-\frac{\alpha}{2},n-1} \left(\frac{S_{\chi}}{\sqrt{n}}\right)$

• We are --% confident that the true population mean lays on the confidence interval.

Confidence Intervals Bounds When We Don't Know σ_x - R code Below is a function you can load into R:

t.int<-function(conf.level, xbar, sx, n){
 t.crit = qt(1-(1-conf.level)/2,n-1);
 std.error = sx/sqrt(n);
 MOE=t.crit*std.error;
 c(xbar-MOE, xbar+MOE)</pre>

Confidence Intervals unknown σ_x

Assumptions	Margin of Error	
1. Random Sample	$\frac{\left((n-1)s_x^2\right)}{2} \le \sigma^2 \le \sigma^2$	$\frac{\left((n-1)s_x^2\right)}{2}$
<i>2. Data follows the</i> Normal Distribution	$\chi^2_{\frac{\alpha}{2}}$	$\chi^2_{1-\frac{\alpha}{2}}$

• We are --% confident that the true population variance lays on the confidence interval.

Below is a function you can load into R:

var.int<-function(conf.level, sx, n){
 chisq.critL = qchisq(1-(1-conf.level)/2,n-1);
 chisq.critU = qchisq((1-conf.level)/2,n-1);
 lower=(n-1)*(sx^2)/chisq.critL
 upper=(n-1)*(sx^2)/chisq.critU
 c(lower,upper)</pre>

Confidence Intervals unknown σ_x

 We are --% confident that the true population standard deviation lays on the confidence interval.

Below is a function you can load into R:

sd.int<-function(conf.level, sx, n){
 chisq.critL = qchisq(1-(1-conf.level)/2,n-1);
 chisq.critU = qchisq((1-conf.level)/2,n-1);
 lower=sqrt((n-1)*(sx^2)/chisq.critL)
 upper=sqrt((n-1)*(sx^2)/chisq.critU)
 c(lower,upper)</pre>

Confidence Intervals unknown σ_x

Assumptions	Margin of Error
1. Random Sample	$\left(s_x^2\right)$ $\left(s_x^2\right)$
<i>2. Data follows the</i> Normal Distribution	$\frac{\left(\frac{\pi}{s_y^2}\right)}{F_{1-\frac{\alpha}{2}}} \le \left(\frac{\sigma_x^2}{\sigma_y^2}\right) \le \frac{\left(\frac{\pi}{s_y^2}\right)}{F_{\frac{\alpha}{2}}}$

• We are --% confident that the true ratio of population variances lays on the confidence interval.

$100(1 - \alpha)\%$ Confidence Interval for σ_x^2 / σ_y^2

- Iterpreting the confidence interval $\left(\frac{\sigma_x^2}{\sigma_y^2}\right)$
 - If all values of the interval are bigger than one: $\sigma_x^2 > \sigma_y^2$
 - If all values of the interval are less than one: $\sigma_x^2 < \sigma_y^2$
 - If the interval contains one it is possible that $\sigma_x^2 = \sigma_y^2$

$100(1 - \alpha)\%$ Confidence Interval for σ_x^2 / σ_y^2 - R code

Below is a function you can load into R:

```
F.int<-function(conf.level, sx, nx, sy, ny){
    sratio = sx^2/sy^2
    F.critL = qf(1-(1-conf.level)/2,nx-1,ny-1);
    F.critU = qf((1-conf.level)/2,nx-1,ny-1);
    lower=sratio/F.critL
    upper=sratio/F.critU
    c(lower,upper)
}</pre>
```