
Stat 515: 
Introduction to Statistics 

Chapter 7 



Confidence Intervals 

• Often, we do not know the population 
parameter, 𝝁, 𝝆 𝒐𝒓 𝝈𝒙 

• We use our sample statistics, 𝒙  ,𝒑 ,𝒔𝒙 to make 
inference on the population parameter, 
𝝁, 𝝆 𝒐𝒓 𝝈𝒙 



Confidence Intervals 

• First, we will consider an interval estimate which we 
call a confidence interval  

         (This is our plus/minus from chapter 1) 

 
𝒑𝒐𝒊𝒏𝒕 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ± 𝒎𝒂𝒓𝒈𝒊𝒏 𝒐𝒇 𝒆𝒓𝒓𝒐𝒓 

 

= 𝒑𝒐𝒊𝒏𝒕 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ±
𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆
𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕

∗
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 

𝑬𝒓𝒓𝒐𝒓

 
 



Telling Which Parameter We’re After 

• As statisticians, or data scientists, it’s our job to 
hear a problem and decide what we’re after 
– We call the parameter of interest the target 

parameter  

Parameter Point Estimate Key Phrase Type of Data 

𝜇 𝑥  Mean, Average Quantitative 

𝜌 𝑝  Proportion, percentage, 
fraction, rate 

Qualitative (Categorical) 

𝜎2 𝑠𝑥
2 Variance, variability, 

spread 
Quantitative 



Confidence Intervals for Population 
Proportions on YouTube 

• Intro: 

– https://www.youtube.com/watch?v=3ReWri_jh3M 

https://www.youtube.com/watch?v=3ReWri_jh3M


Recall Sampling Distributions for 
Sampling Proportions 

• Recall: the mean of the sampling distribution 
for a sample proportion will always equal the 
population proportion: 𝝁𝒑 = 𝝆 

• The standard error, the standard deviation of 
the sample proportion, is: 

𝝈𝒑 = 
𝝆 𝟏 − 𝝆

𝒏
 



Confidence Intervals: Step One 

• Assumptions: 

1. Data must be obtained through randomization 

2. We MUST make sure that 𝑛𝑝 ≥ 15 and 
𝑛 1 − 𝑝 ≥ 15. This ensures that 𝑝  follows a bell 
shaped distribution  

• Recall Chapter 4 and the shape of the binomial dist. 



Confidence Intervals: Step Two 

• Recall: 𝑝  is our point-estimate for the 
population proportion 

 

• Recall we consider
𝑝 1−𝑝 

𝑛
 when we don’t 

know 𝜌 for the standard error as 𝑝  can 
estimate the value of 𝜌 



Confidence Intervals: Step Two 

• 𝑝  is our point-estimate for the population 
proportion 

– Our ‘best’ guess for the true population 
proportion, 𝝆, is our sample proportion, 𝑝 . 



Confidence Intervals: Step Two 

• 𝑧
1−

𝛼

2

𝑝 1−𝑝 

𝑛
 is our margin of error 

 

• 𝑧
1−

𝛼

2
 is the confidence coefficient and is the z 

value such that 𝑃 𝑍 < 𝑧
1−

𝛼

2

= 1 −
𝛼

2
  

•
𝑝 1−𝑝 

𝑛
 is the estimated standard deviation 



Confidence Intervals – Step Two 
• The most common values of Z are listed below 

– Level of confidence = (1-∝) * 100% 
– Error Probability = ∝ = 1- Level of confidence 

 
 

 
 
 

– Our interval will get larger when the margin of error 
increases 

1) When we increase confidence  increase z  widen interval 
2) When we decrease confidence  decrease z  narrow interval 

Confidence Error Probability (∝) 𝒛
𝟏−

𝜶

𝟐

  From Table 𝒛
𝟏−

𝜶

𝟐

  From R 

.9 .1 1.645 1.644854 

.95 .05 1.96 1.959964 

.99 .01 2.58 2.57829 



Confidence Intervals: Step Two 

• 𝑧
1−

𝛼

2

𝑝 1−𝑝 

𝑛
 is our margin of error 

– As n increases, the margin of error decreases 
causing the width of the confidence interval to 
narrow 

– As n decreases, the margin of error increases 
causing the width of the confidence interval to 
grow wider 

 



Confidence Intervals: Margin of Error 

• 𝑧
1−

𝛼

2

𝑝 1−𝑝 

𝑛
 is our margin of error 

– As the confidence level decreases, z decreases 
causing the margin of error to decrease, causing 
the width of the confidence interval to narrow 

– As the confidence level increases, z increases 
causing the margin of error to increase, causing 
the width of the confidence interval to grow wider 

 



Confidence Intervals – Step Two 

• A fishing metaphor: 

– As n increases  confidence interval narrows 

– As n decreases confidence interval widens 

 

– Think about fishing in a pond with a net. If there are 
more fish you can use a smaller net to catch the fish.  

– In our case, when our sample size is larger we can use a 
smaller interval to catch our parameter. 

 



Confidence Intervals – Step Two 

• A fishing metaphor: 

– Increase confidence  confidence interval narrows 

– Decrease confidence  confidence interval widens 

 

– Think about fishing in a pond with a net. We want to be 
more certain that we’ll catch a fish we need a bigger net. 

– In our case, when we increase confidence to be more 
certain that we’ll catch the parameter, we need a bigger 
interval. 

 



Confidence Intervals Bounds 

𝑝 ± 𝑧
1−

𝛼
2

𝑝 1 − 𝑝 

𝑛
 

Lower Bound = 𝑝 − 𝑧𝛼

2

𝑝 1−𝑝 

𝑛
 

Upper Bound = 𝑝 + 𝑧𝛼

2

𝑝 1−𝑝 

𝑛
 

 



Confidence Intervals Bounds 

𝑝 ± 𝑧𝛼
2

𝑝 1 − 𝑝 

𝑛
 

 

“We are --% confident that the true population 
proportion, 𝝆, is between the lower bound and 
upper bound.” 

 



Confidence Intervals 

• We choose our values such that 

– Our point estimate is the mean, the 50th percentile 

– Our lower bound is the 
𝛼

2

th
 percentile 

– Our upper bound is the 1-
𝛼

2

th
 percentile 



How We Found the Common Z’s: 90% 

• For a 90% confidence interval upper bound, we need 
to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .90

2
= 1 −

.10

2
= .9500 

• If we look this up in the z-table we see that a z-score 
between 1.64 or 1.65 gives us a value very close to 
.9500  1.645 



How We Found the Common Z’s: 90% 

• For a 90% confidence interval upper bound, we 
need to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .90

2
= 1 −

.10

2
= .9500 

• To look this up in R: qnorm(.9500,0,1)=1.644854 



How We Found the Common Z’s: 90% 

• Lower Bound: If we look this up in the z-table we 
see that a z-score between -1.65 or -1.64 gives us a 
value very close to .0500 

• Upper Bound: If we look this up in the z-table we 
see that a z-score between 1.65 or 1.64 gives us a 
value very close to .9500 

• Since it’s in the middle we average 1.64 and 1.65 

 

• This is why we have plus or minus z=1.645 for a 
90% confidence interval 

 



How We Found the Common Z’s: 95% 

• For a 95% confidence interval upper bound, we 
need to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .95

2
= 1 −

.05

2
= .9750 

• If we look this up in the z-table we see that a z-
score of 1.96 gives us a value very close to .9750 



How We Found the Common Z’s: 95% 

• For a 95% confidence interval upper bound, we 
need to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .95

2
= 1 −

.05

2
= .9750 

• To look this up in R: qnorm(.9750,0,1)=1.959964 



How We Found the Common Z’s: 95% 

• Lower Bound: If we look this up in the z-table we 
see that a z-score of -1.96 gives us a value very 
close to .0250 

• Upper Bound: If we look this up in the z-table we 
see that a z-score of 1.96 gives us a value very 
close to .9750 

 

• This is why we have plus or minus z=1.96 for a 95% 
confidence interval 

 



How We Found the Common Z’s: 99% 

• For a 99% confidence interval upper bound, we 
need to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .99

2
= 1 −

.01

2
= .9950 

• If we look this up in the z-table we see that a z-
score of 2.58 gives us a value very close to .9950 



How We Found the Common Z’s: 99% 

• For a 99% confidence interval upper bound, we 
need to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .99

2
= 1 −

.01

2
= .9950 

• To look this up in R: qnorm(.9500,0,1)=2.575829 



How We Found the Common Z’s: 99% 

• Lower Bound: If we look this up in the z-table we 
see that a z-score of -2.58 gives us a value very 
close to .0500 

• Upper Bound: If we look this up in the z-table we 
see that a z-score of 2.58 gives us a value very 
close to .9500 

 

• This is why we have plus or minus z=2.58 for a 99% 
confidence interval 

 



How We Find an Uncommon Z: 98% 

• For a 98% confidence interval lower bound, we need 
to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .98

2
= 1 −

.02

2
= .9900 

• If we look this up in the z-table we see that a z-score 
of 2.33 gives us a value very close to .9900 



How We Found the Common Z’s: 98% 

• For a 98% confidence interval upper bound, we 
need to find the z with a percentile of   

1 −
α

2
= 1 −

1 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

2
= 1 −

1 − .98

2
= 1 −

.02

2
= .9900 

• To look this up in R: qnorm(.9900,0,1)=2.326348 



How We Found the Common Z’s: 98% 

• Lower Bound: If we look this up in the z-table we 
see that a z-score of -2.33 gives us a value very 
close to .0100 

• Upper Bound: If we look this up in the z-table we 
see that a z-score of 2.33 gives us a value very 
close to .9900 

 

• This is why we have plus or minus z=2.33 for a 98% 
confidence interval 



Examples 



Example 

• A random sample of MLB home games showed 
that the home teams won 1335 of 2429 games.  

• Our sample proportion = 𝑝 =
1335

2429
= .5496 

• We should know this is a proportion problem 
because we’re considering a qualitative 
(categorical) random variable 

• Find the 95% confidence interval for the 
population proportion 



Example 

• Step One:  

• Check Assumptions:  
• 𝑛 ∗ 𝑝 = 2429 ∗ .5496 = 1334.9784 ≥ 15 

• 𝑛 ∗ 1 − 𝑝 = 2429 ∗ .4504 = 1094.0216 ≥ 15 

• Thus, it is safe to assume the distribution of 𝑝  has a bell 
shaped distribution 

• The data is from a random sample 



Example 

• Step Two:  
• 95% CI: 

𝑝 ± 𝑧𝛼
2

𝑝 1 − 𝑝 

𝑛
 

. 5496 ± 1.96
.5496 .4504

2429
 

= (.5298, . 5694) 
 

• We are 95% confident that the true population proportion 
of home team wins is between 52.98 and 56.94 percent. 



Example 

• A random sample of MLB home games showed 
that the home teams won 1335 of 2429 games.  

• 95% CI: 
(.5298, . 5694) 

 

• We see here that there is a small home field 
advantage because all of the values in our 95% CI 
are above 0.5. 
– We know that 0.5 is interesting because it means 

more than half the time or most 



Example 

• A random sample of MLB home games showed that 
the home teams won 1335 of 2429 games.  

• 99% CI: 

𝑝 ± 𝑧𝛼
2

𝑝 1 − 𝑝 

𝑛
 

. 549 ± 𝟐. 𝟓𝟖
.549 .451

2429
= (.5236, .5756) 

• We are 99% confident that the true population 
proportion of home team wins is between 52.36 and 
57.56 percent. 



Example 

• A random sample of MLB home games 
showed that the home teams won 1335 of 
2429 games.  

• 99% CI: 
(.5236, .5756) 

• Still, we see here that there is a small home 
field advantage but we note the interval is 
larger 



Wilson’s Adjustment for Estimating 𝜌 

• Wilson’s Adjustment is a nice trick to ‘correct’ 
our confidence interval when n isn’t extremely 
large and performs poorly when 𝜌 is near 0 or 1 

𝑝 ± 𝑧𝛼
2

𝑝 1 − 𝑝 

𝑛
 

• Where 𝑝 =
x+2

n+4
 is the adjusted proportion of 

observations 



Example 

• Let’s complete our previous example about MLB 
home games with Wilson’s Adjustment this time 

– The only difference here will be how we calculate the 

sample proportion: 𝑝 =
𝑥+2

𝑛+4
 instead of 𝑝 =

𝑥

𝑛
 

– Note: we shouldn’t see a drastic change because we 
aren’t in the case where n isn’t extremely large and 
performs poorly when 𝜌 is near 0 or 1 

 



Example 

• A random sample of MLB home games showed 
that the home teams won 1335 of 2429 games.  

• Our sample proportion =𝑝 =
1335+2

2429+4
= .5495 

• We should know this is a proportion problem 
because we’re considering a qualitative 
(categorical) random variable 

• Find the 95% confidence interval for the 
population proportion 



Example 

• Step One:  

• Check Assumptions:  
• 𝑛 ∗ 𝑝 = 2429 ∗ .5496 = 1334.9784 ≥ 15 

• 𝑛 ∗ 1 − 𝑝 = 2429 ∗ .4504 = 1094.0216 ≥ 15 

• Thus, it is safe to assume the distribution of 𝑝  has a bell 
shaped distribution 

• The data is from a random sample 



Example 

• Step Two:  
• 95% CI: 

𝑝 ± 𝑧𝛼
2

𝑝 1 − 𝑝 

𝑛
 

. 5495 ± 1.96
.5495 .4505

2429
 

= (.5297, . 5693) 
 

• We are 95% confident that the true population proportion 
of home team wins is between 52.97 and 56.93 percent. 



Example 

• A random sample of MLB home games showed 
that the home teams won 1335 of 2429 games.  

• 95% CI: 
(.5297, . 5693) 

 

• We see here that there is a small home field 
advantage because all of the values in our 95% CI 
are above 0.5. 
– We know that 0.5 is interesting because it means 

more than half the time or most 



Example in R 

Below is a function you can load into R: 
 
prop.int<-function(conf.level, x, n, Wilson=FALSE){ 
   if(Wilson){ 
      phat=(x+2)/(n+4) 
   }else{ 
      phat=x/n 
   } 
   z.crit = qnorm(1-(1-conf.level)/2); 
   std.error = sqrt(phat*(1-phat)/n); 
   MOE=z.crit*std.error; 
   c(phat-MOE, phat+MOE) 
} 



Example in R 

• You can call the function as below which will 
provide the 95% confidence interval for a 
population proportion from a sample where 
1335 of 2429 games were won from the home 
team: 

prop.int(.95, 1335, 2429,Wilson=FALSE) 

OR with Adjustment 

prop.int(.95, 1335, 2429,Wilson=TRUE) 

 



Determining the Sample Size 

• Say we want to set sampling error at SE with 
100 1 − 𝛼 %  confidence: 

 Set:        𝑧
1−

𝛼

2

𝑝 1−𝑝 

𝑛
= 𝑆𝐸 

Solve for n:    n = 

𝑧
1−

𝛼
2

2 𝑝 1−𝑝 

𝑆𝐸2  

 

Note: n is maximized for 𝑝 =.5 



Recall Sampling Distributions for 
Sampling Means 

• The mean of the sampling distribution for a 
sample mean  
𝜇𝑥 

= 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛𝑠
= 𝜇𝑥 = 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛 

• The standard error, the standard deviation of 
all sample means, is: 

𝜎𝑥 =
𝜎𝑥

𝑛
 



Confidence Intervals  
For the Population Mean 

• When we talk about confidence intervals for 
the population mean we have two approaches 

1. When we know 𝜎𝑥 (we are rarely in this case) 

2. When we don’t know 𝜎𝑥 



Confidence Intervals When We Know 𝜎𝑥 

• We use our sample means to make inference 
on the population mean 

𝑥 ± 𝑧
1−

𝛼
2

𝜎𝑥

𝑛
 

• 𝑥  is our point-estimate for the population 
mean 

• 𝑧1−
𝛼

2

𝜎𝑥

𝑛
is our margin of error 

 



Confidence Intervals When We Know 𝜎𝑥 

• 𝑥  is our point-estimate for the population 
mean 

– Our ‘best’ guess for the true population , mean is 
our sample mean 



Confidence Intervals: Margin of Error 
 When We Know 𝜎𝑥 

• 𝑧𝛼

2

𝜎𝑥

𝑛
is our margin of error 

– As n increases, 
𝜎𝑥

𝑛
 decreases, causing the 

margin of error to decrease causing the width of 
the confidence interval to narrow 

– As n decreases, 
𝜎𝑥

𝑛
 increases, causing the 

margin of error to increase causing the width of 
the confidence interval to widen 



Confidence Intervals: Margin of Error 
 When We Know 𝜎𝑥 

• 𝑧𝛼

2

𝜎𝑥

𝑛
 is our margin of error 

– As the confidence level decreases, z decreases 
causing the margin of error to decrease, causing 
the width of the confidence interval to narrow 

– As the confidence level increases, z increases 
causing the margin of error to increase, causing 
the width of the confidence interval to grow wider 

 



Confidence Intervals Bounds  
When We Know 𝜎𝑥 

Lower Bound = 𝑥 − 𝑧𝛼

2

𝜎𝑥

𝑛
 

Upper Bound = 𝑥 + 𝑧𝛼

2

𝜎𝑥

𝑛
 

 

We are --% confident that the true population 
mean, 𝜇𝑥, is between the lower and upper bound. 

 

Note: there’s an incredible likeliness to confidence 
intervals for proportions 



Confidence Intervals Bounds  
When We Know 𝜎𝑥 - R code 

Below is a function you can load into R: 

 

z.int<-function(conf.level, xbar, sigma, n){ 

   z.crit = qnorm(1-(1-conf.level)/2); 

   std.error = sigma/sqrt(n); 

   MOE=z.crit*std.error; 

   c(xbar-MOE, xbar+MOE) 

} 



Confidence Intervals Bounds  
When We Know 𝜎𝑥 - R code 

• You can call the function as below which will provide 
the 95% confidence interval for a population mean 
from a sample of 3 that had mean 5 and known 
population standard deviation 3: 

 

conf.level=.95 #Confidence Level 

xbar=5 #Sample Mean 

sigma=2 #Population Standard Deviation 

n=3 #Sample Size 

z.int(conf.level, xbar, sigma, n)  



Determining the Sample Size 

• Say we want to set sampling error at SE with 
100 1 − 𝛼 %  confidence: 

 Set:        𝑧
1−

𝛼

2

𝜎𝑋

𝑛
= 𝑆𝐸 

Solve for n:    n = 

𝑧
1−

𝛼
2

2 𝜎𝑥

𝑆𝐸2  

 



Confidence Intervals Bounds  
When We Don’t Know 𝜎𝑥 

• Now, onto the more realistic situation where 
we don’t know the population standard 
deviation. 



Confidence Intervals  
When We Don’t Know 𝜎𝑥 

• We use our sample means to make inference 
on the population mean 

𝑥 ± 𝑡
1−

∝
2
,𝑛−1

𝑠𝑥

𝑛
 

• 𝑥  is our point-estimate for the population 
mean 

• 𝑡
1−

∝

2
,𝑛−1

𝑠𝑥

𝑛
 is our margin of error 

– 𝑠𝑥 is the sample standard deviation 

 



Confidence Intervals 
 When We Don’t Know 𝜎𝑥 

• 𝑥  is our point-estimate for the population 
mean 

– Our ‘best’ guess for the true population , mean is 
our sample mean 



Confidence Intervals: Margin of Error 
 When We Don’t Know 𝜎𝑥 

• 𝑡
1−

∝

2
,𝑛−1

𝑠𝑥

𝑛
 is our margin of error 

– As n increases, t decreases and 
𝑠𝑥

𝑛
 decreases, 

causing the margin of error to decrease causing 
the width of the confidence interval to narrow 

– As n decreases, t increases and 
𝑠𝑥

𝑛
 increases, 

causing the margin of error to increase causing 
the width of the confidence interval to widen 



Confidence Intervals: Margin of Error 
 When We Don’t Know 𝜎𝑥 

• 𝑡
1−

∝

2
,𝑛−1

𝑠𝑥

𝑛
 is our margin of error 

– As the confidence level decreases, t decreases 
causing the margin of error to decrease, causing 
the width of the confidence interval to narrow 

– As the confidence level increases, t increases 
causing the margin of error to increase, causing 
the width of the confidence interval to grow wider 

 



Confidence Intervals Bounds 
 When We Don’t Know 𝜎𝑥 

Lower Bound = 𝑥 − 𝑡
1−

∝

2
,𝑛−1

𝑠𝑥

𝑛
 

Upper Bound = 𝑥 + 𝑡
1−

∝

2
,𝑛−1

𝑠𝑥

𝑛
 

 

• We are --% confident that the true population 
mean, 𝜇x, is between the lower and upper 
bounds. 

 



Confidence Intervals 
 When We Don’t Know 𝜎𝑥 

• t is based on the t distribution which is a lot 
like the normal distribution but with fatter 
tails 

– You can find the correct t-value by finding the 
cross-hair of degrees of freedom, n-1, and the two 
tailed alpha 

– http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf 

http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf


Finding t for Our Confidence Intervals 
• Say we were trying to find the t-value for a 

95% confidence with n=10 

• This means 𝛼 = 1 − .95 = .05 and the 
degrees of freedom = 10 - 1 = 9 

• 𝑡
1−

.05

2
,9
  = 2.262 



Zoom In 
 

 

 

 

 

• A is the degrees of freedom, n-1 

• B is the significance level – for confidence 
intervals we look for 𝛼 in the two-tail row 

• C is the t-value associated with the provided 
degrees of freedom and significance level 



Finding t for Our Confidence Intervals 
• Say we were trying to find the t-value for a 

99% confidence with n=9 

• This means 𝛼 = 1 − .99 = .01 and the 
degrees of freedom = 9 - 1 = 8 

• 𝑡
1−

.01

2
,8

=3.355 



Zoom In 
 

 

 

 

 

• A is the degrees of freedom, n-1 

• B is the significance level – for confidence 
intervals we look for 𝛼 in the two-tail row 

• C is the t-value associated with the provided 
degrees of freedom and significance level 



Finding t for Our Confidence Intervals 
• Say we were trying to find the t-value for a 

90% confidence with n=11 

• This means 𝛼 = 1 − .90 = .10 and the 
degrees of freedom = 11 - 1 = 10 

• 𝑡
1−

.10

2
,10

= 1.812 



Zoom In 
 

 

 

 

 

• A is the degrees of freedom, n-1 

• B is the significance level – for confidence 
intervals we look for 𝛼 in the two-tail row 

• C is the t-value associated with the provided 
degrees of freedom and significance level 



Confidence Interval Bounds 
 When We Don’t Know 𝜎𝑥  

𝑥 ± 𝑡
1−

∝
2
,𝑛−1

𝑠𝑥

𝑛
 

 

Lower Bound= 𝑥 − 𝑡
1−

∝

2
,𝑛−1

𝑠𝑥

𝑛
 

Upper Bound= 𝑥 + 𝑡
1−

∝

2
,𝑛−1

𝑠𝑥

𝑛
 

 



Example 

• Suppose a random sample of 38 yearly 
average temperature measures in New Haven, 
CT. Among the sampled years the sample 
mean temperature was 51.0474 degrees 
fahrenheit with a sample standard deviation 
of 1.3112. 

• Our sample mean = 𝑥  = 51.0474 

• Our sample standard deviation = 𝑠𝑥 = 1.3112 



Example 

• Suppose a random sample of 38 yearly 
average temperature measures in New Haven, 
CT. Among the sampled years the sample 
mean temperature was 51.0474 degrees 
Fahrenheit with a sample standard deviation 
of 1.3112. 

• Check Assumptions 
 n>30 so it is safe to assume the distribution of 𝑥  is 

bell-shaped 

 The data is from a random sample 



Example 

• 95% Confidence Interval for population the 
true population mean yearly average 
temperature reading in New Haven is: 

𝑥 ± 𝑡
1−

.05
2

,38−1

𝑠𝑥

𝑛
 

= 51.0474 ± 2.021
1.3112

38
 

(50.61752, 51.47728) 



Example 

(50.61752, 51.47728) 

 

• We are 95% confident that the true 
population mean yearly average temperature 
reading in New Haven is between 50.61752 
and 51.47728 degrees Fahrenheit 

 



Confidence Intervals Bounds  
When We Don’t Know 𝜎𝑥 - R code 

Below is a function you can load into R: 

 

t.int<-function(conf.level, xbar, sx, n){ 

   t.crit = qt(1-(1-conf.level)/2,n-1); 

   std.error = sx/sqrt(n); 

   MOE=t.crit*std.error; 

   c(xbar-MOE, xbar+MOE) 

} 



Confidence Intervals Bounds  
When We Don’t Know 𝜎𝑥 - R code 

• You can call the function as below which will provide 
the 95% confidence interval for a population mean 
from a sample of 38 that had mean 51.0474 and 
sample standard deviation 1.3112: 

 

conf.level=.95 #Confidence Level 

xbar=51.0474 #Sample Mean 

sx=1.3112 #Sample Standard Deviation 

n=38 #Sample Size 

t.int(conf.level, xbar, sx, n)  



100 1 − 𝛼 % Confidence Interval for 𝜎2 

• Recall: Χ𝑛−1
2 =

𝑛−1 𝑠2

𝜎𝑥
2  

 

• If we choose 𝜒𝛼

2

2 such that 𝑃 𝜒𝑛−1
2 ≤ 𝜒𝛼

2

2 =
𝛼

2
 

and 𝜒
1−

𝛼

2

2  such that 𝑃 𝜒𝑛−1
2 ≥ 𝜒

1−
𝛼

2

2 =
𝛼

2
 then 

we have 𝑃 𝜒𝛼

2

2 ≤ 𝜒𝑛−1
2 ≤ 𝜒

1−
𝛼

2

2 = 1 − 𝛼 



100 1 − 𝛼 % Confidence Interval for 𝜎2 

• Recall: Χ𝑛−1
2 =

𝑛−1 𝑠2

𝜎𝑥
2  

 𝑃 𝜒𝛼

2

2 ≤
𝑛−1 𝑠2

𝜎𝑥
2 ≤ 𝜒

1−
𝛼

2

2  

= 𝑃
1

𝜒𝛼
2

2 ≥
𝜎𝑥

2

𝑛 − 1 𝑠2
≥

1

𝜒
1−

𝛼
2

2

 

 

= 𝑃
1

𝜒
1−

𝛼
2

2 ≤
𝜎𝑥

2

𝑛 − 1 𝑠2
≤

1

𝜒𝛼
2

2

 

 

= 𝑃
𝑛 − 1 𝑠2

𝜒
1−

𝛼
2

2 ≤ 𝜎𝑥
2 ≤

𝑛 − 1 𝑠2

𝜒𝛼
2

2

 

 

 
 



100 1 − 𝛼 % Confidence Interval for 𝜎2 

• Assumptions are:  

– The sample is selected from the target population 

– The population of interest has a relative frequency 
distribution that is approximately normal 

 
𝑛 − 1 𝑠2

𝜒
1−

𝛼
2

2 ≤ 𝜎𝑥
2 ≤

𝑛 − 1 𝑠2

𝜒𝛼
2

2

 

 



100 1 − 𝛼 % Confidence Interval for 𝜎 

• We can take the square root of all sides to get a 
confidence interval for 𝜎 

 

𝑛 − 1 𝑠2

𝜒
1−

𝛼
2

2 ≤ 𝜎𝑥
2 ≤

𝑛 − 1 𝑠2

𝜒𝛼
2

2

 

 



100 1 − 𝛼 % Confidence Interval  
for 𝜎 - R code 

Below is a function you can load into R: 
 
var.int<-function(conf.level, sx, n){ 
   chisq.critL = qchisq(1-(1-conf.level)/2,n-1); 
   chisq.critU = qchisq((1-conf.level)/2,n-1); 
   lower=(n-1)*(sx^2)/chisq.critL 
   upper=(n-1)*(sx^2)/chisq.critU 
   c(lower,upper) 
} 



100 1 − 𝛼 % Confidence Interval  
for 𝜎 - R code 

• You can call the function below which will provide the 95% 
confidence interval for a population variance from the New 
Haven temperature data from  sample of 38 that had mean 
51.0474 and sample standard deviation 1.3112: 

 
conf.level=.95 #Confidence Level 
sx=1.3112 #Sample Standard Deviation 
n=38 #Sample Size 
var.int(conf.level, sx, n)  
 
Answer: (1.142705, 2.877642)  
We are 95% confident that the true population variance is 
between 1.142705 and 2.877642) 



100 1 − 𝛼 % Confidence Interval  
for 𝜎 - R code 

Below is a function you can load into R: 
 
sd.int<-function(conf.level, sx, n){ 
   chisq.critL = qchisq(1-(1-conf.level)/2,n-1); 
   chisq.critU = qchisq((1-conf.level)/2,n-1); 
   lower=sqrt((n-1)*(sx^2)/chisq.critL) 
   upper=sqrt((n-1)*(sx^2)/chisq.critU) 
   c(lower,upper) 
} 



100 1 − 𝛼 % Confidence Interval  
for 𝜎 - R code 

• You can call the function below which will provide the 95% 
confidence interval for a population standard deviation 
from the New Haven temperature data from  sample of 38 
that had mean 51.0474 and sample standard deviation 
1.3112: 

 
conf.level=.95 #Confidence Level 
sx=1.3112 #Sample Standard Deviation 
n=38 #Sample Size 
sd.int(conf.level, sx, n)  
 
Answer: (1.068974, 1.696361)  
We are 95% confident that the true population variance is 
between 1.068974 and 1.696361 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2 

• Recall: 𝐹𝑛𝑥−1,𝑛𝑦−1 =

𝑠𝑥
2

𝑠𝑦
2

𝜎𝑥
2

𝜎𝑦
2

  

 

• If we choose 𝐹𝛼

2

 such that 𝑃 𝐹𝑛𝑥−1,𝑛𝑦−1 ≤ 𝐹𝛼

2

=
𝛼

2
 and 

𝐹
1−

𝛼

2

2  such that 𝑃 𝐹𝑛𝑥−1,𝑛𝑦−1 ≥ 𝐹
1−

𝛼

2

=
𝛼

2
  then we 

have 𝑃 𝐹𝛼

2

≤ 𝐹𝑛𝑥−1,𝑛𝑦−1 ≤ 𝐹
1−

𝛼

2

= 1 − 𝛼 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2 

• Recall: 𝐹𝑛𝑥−1,𝑛𝑦−1 =

𝑠𝑥
2

𝑠𝑦
2

𝜎𝑥
2

𝜎𝑦
2

  

𝑃 𝐹𝛼
2

≤

𝑠𝑥
2

𝑠𝑦
2

𝜎𝑥
2

𝜎𝑦
2

≤ 𝐹
1−

𝛼
2

= 𝑃
1

𝐹𝛼
2

≥

𝜎𝑥
2

𝜎𝑦
2

𝑠𝑥
2

𝑠𝑦
2

≥
1

𝐹
1−

𝛼
2

 

= 𝑃
1

𝐹
1−

𝛼
2

≤

𝜎𝑥
2

𝜎𝑦
2

𝑠𝑥
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𝑠𝑦
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≤
1

𝐹𝛼
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𝑠𝑦
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1−

𝛼
2
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2

𝜎𝑦
2 ≤

𝑠𝑥
2
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2

𝐹𝛼
2

= 1 − 𝛼 

 
 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2 

• We can take the square root of all sides to get a 
confidence interval for 𝜎𝑥

2/ 𝜎𝑦
2 

 
𝑠𝑥
2

𝑠𝑦
2

𝐹
1−

𝛼
2

≤
𝜎𝑥

2

𝜎𝑦
2 ≤

𝑠𝑥
2

𝑠𝑦
2

𝐹𝛼
2

 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2 

• Iterpreting the confidence interval 
𝜎𝑥

2

𝜎𝑦
2  

– If all values of the interval are bigger than one: 𝜎𝑥
2 > 𝜎𝑦

2 

– If all values of the interval are less than one: 𝜎𝑥
2< 𝜎𝑦

2 

– If the interval contains one it is possible that 𝜎𝑥
2=𝜎𝑦

2 

 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2- R code 

Below is a function you can load into R: 
 
F.int<-function(conf.level, sx, nx, sy, ny){ 
   sratio = sx^2/sy^2 
   F.critL = qf(1-(1-conf.level)/2,nx-1,ny-1); 
   F.critU = qf((1-conf.level)/2,nx-1,ny-1); 
   lower=sratio/F.critL 
   upper=sratio/F.critU 
   c(lower,upper) 
} 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2- R code 

• You can call the function below which will provide the 95% 
confidence interval for the ratios of the population variances from 
two groups. Say we have a sample, X, of 32 that had sample 
standard deviation 1.45 and a sample, Y, of 38 that had sample 
standard deviation 1.57:  
 

conf.level=.95 #Confidence Level 
sx=1.45 #Sample Standard Deviation 
nx=32 
sy=1.57 #Sample Standard Deviation 
ny=38 
F.int(conf.level, sx, nx, sy, ny)  
 
Answer: (.4338582,1.7125010) we are 95% confident that the ratio of 
the population variances is between .4338582 and 1.7125010; 1 is on 
the confidence interval, so it is possible that the variances are equal. 



Summaries 



Confidence Intervals 

Assumptions Point 
Estimate 

Margin of Error Margin of Error 

1. Random Sample 
 

2. 𝑛𝑝 ≥ 15 
And 

𝑛 1 − 𝑝 ≥ 15 

𝑝  
𝑧𝛼
2

𝑝 1 − 𝑝 

𝑛
 𝑝 ± 𝑧𝛼

2

𝑝 1 − 𝑝 

𝑛
 

• We are --% confident that the true population 
proportion lays on the confidence interval. 



Example in R 

Below is a function you can load into R: 
 
prop.int<-function(conf.level, x, n, Wilson=FALSE){ 
   if(Wilson){ 
      phat=(x+2)/(n+4) 
   }else{ 
      phat=x/n 
   } 
   z.crit = qnorm(1-(1-conf.level)/2); 
   std.error = sqrt(phat*(1-phat)/n); 
   MOE=z.crit*std.error; 
   c(phat-MOE, phat+MOE) 
} 



Confidence Intervals known 𝜎𝑥 

Assumptions Point 
Estimate 

Margin of Error Margin of Error 

1. Random Sample 
 

2. 𝑛 > 30 OR the 
population is bell 
shaped 

𝑥  𝜎𝑥 =
𝜎𝑥

𝑛
 

𝑥 ± 𝑧𝛼
2

𝜎𝑥

𝑛
 

• We are --% confident that the true population 
mean lays on the confidence interval. 



Confidence Intervals Bounds  
When We Know 𝜎𝑥 - R code 

Below is a function you can load into R: 

 

z.int<-function(conf.level, xbar, sigma, n){ 

   z.crit = qnorm(1-(1-conf.level)/2); 

   std.error = sigma/sqrt(n); 

   MOE=z.crit*std.error; 

   c(xbar-MOE, xbar+MOE) 

} 



Confidence Intervals unknown 𝜎𝑥 

Assumptions Point 
Estimate 

Margin of 
Error 

Margin of Error 

1. Random Sample 
 

2. 𝑛 > 30 OR the 
population is bell 
shaped 

𝑥  𝜎𝑥 =
𝑠𝑥

𝑛
 𝑥 ± 𝑡

1−
𝛼
2
,𝑛−1

𝑠𝑥

𝑛
 

• We are --% confident that the true population 
mean lays on the confidence interval. 



Confidence Intervals Bounds  
When We Don’t Know 𝜎𝑥 - R code 

Below is a function you can load into R: 

 

t.int<-function(conf.level, xbar, sx, n){ 

   t.crit = qt(1-(1-conf.level)/2,n-1); 

   std.error = sx/sqrt(n); 

   MOE=t.crit*std.error; 

   c(xbar-MOE, xbar+MOE) 

} 



Confidence Intervals unknown 𝜎𝑥 

Assumptions Margin of Error 

1. Random Sample 
 

2. 𝐷𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑒 
Normal Distribution 

𝑛 − 1 𝑠𝑥
2

𝜒𝛼
2

2 ≤ 𝜎2 ≤  
𝑛 − 1 𝑠𝑥

2

𝜒
1−

𝛼
2

2  

• We are --% confident that the true population 
variance lays on the confidence interval. 



100 1 − 𝛼 % Confidence Interval  
for 𝜎 - R code 

Below is a function you can load into R: 
 
var.int<-function(conf.level, sx, n){ 
   chisq.critL = qchisq(1-(1-conf.level)/2,n-1); 
   chisq.critU = qchisq((1-conf.level)/2,n-1); 
   lower=(n-1)*(sx^2)/chisq.critL 
   upper=(n-1)*(sx^2)/chisq.critU 
   c(lower,upper) 
} 



Confidence Intervals unknown 𝜎𝑥 

Assumptions Margin of Error 

1. Random Sample 
 

2. 𝐷𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑒 
Normal Distribution 

𝑛 − 1 𝑠𝑥
2

𝜒𝛼
2

2 ≤ 𝜎 ≤
𝑛 − 1 𝑠𝑥

2

𝜒
1−

𝛼
2

2  

• We are --% confident that the true population 
standard deviation lays on the confidence 
interval. 



100 1 − 𝛼 % Confidence Interval  
for 𝜎 - R code 

Below is a function you can load into R: 
 
sd.int<-function(conf.level, sx, n){ 
   chisq.critL = qchisq(1-(1-conf.level)/2,n-1); 
   chisq.critU = qchisq((1-conf.level)/2,n-1); 
   lower=sqrt((n-1)*(sx^2)/chisq.critL) 
   upper=sqrt((n-1)*(sx^2)/chisq.critU) 
   c(lower,upper) 
} 



Confidence Intervals unknown 𝜎𝑥 

Assumptions Margin of Error 

1. Random Sample 
 

2. 𝐷𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑒 
Normal Distribution 

𝑠𝑥
2

𝑠𝑦
2

𝐹
1−

𝛼
2

≤
𝜎𝑥

2

𝜎𝑦
2 ≤

𝑠𝑥
2

𝑠𝑦
2

𝐹𝛼
2

 

• We are --% confident that the true ratio of 
population variances lays on the confidence 
interval. 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2 

• Iterpreting the confidence interval 
𝜎𝑥

2

𝜎𝑦
2  

– If all values of the interval are bigger than one: 𝜎𝑥
2 > 𝜎𝑦

2 

– If all values of the interval are less than one: 𝜎𝑥
2< 𝜎𝑦

2 

– If the interval contains one it is possible that 𝜎𝑥
2=𝜎𝑦

2 

 



100 1 − 𝛼 % Confidence Interval  
for 𝜎𝑥

2/ 𝜎𝑦
2- R code 

Below is a function you can load into R: 
 
F.int<-function(conf.level, sx, nx, sy, ny){ 
   sratio = sx^2/sy^2 
   F.critL = qf(1-(1-conf.level)/2,nx-1,ny-1); 
   F.critU = qf((1-conf.level)/2,nx-1,ny-1); 
   lower=sratio/F.critL 
   upper=sratio/F.critU 
   c(lower,upper) 
} 


