Stat 515;
Introduction to Statistics



Confidence Intervals

e Often, we do not know the population
parameter, i, p or o,

* We use our sample statistics, X ,p,s, to make
inference on the population parameter,

I, p OT O,



Confidence Intervals

* First, we will consider an interval estimate which we
call a confidence interval

(This is our plus/minus from chapter 1)

point estimate + margin of error

conf idence) ) (Standard)

= poi ] 1 . .
point estimate x (coe fficient Error



Telling Which Parameter We're After

* As statisticians, or data scientists, it’s our job to
hear a problem and decide what we're after

— We call the parameter of interest the target

parameter
_')Z Mean, Average Quantitative
Proportion, percentage, Qualitative (Categorical)
p p fraction, rate

o 2 S 2 Variance, variability, Quantitative
X spread



Confidence Intervals for Population
Proportions on YouTube

* |ntro:
— https://www.youtube.com/watch?v=3ReWri jh3M



https://www.youtube.com/watch?v=3ReWri_jh3M

Recall Sampling Distributions for
Sampling Proportions

* Recall: the mean of the sampling distribution
for a sample proportion will always equal the

population proportion: s = p
* The standard error, the standard deviation of
the sample proportion, is:

p(1—p)
V n

Op —



Confidence Intervals: Step One

* Assumptions:

1. Data must be obtained through randomization

2. We MUST make sure that np = 15 and
n(1 — p) = 15. This ensures that p follows a bell
shaped distribution

* Recall Chapter 4 and the shape of the binomial dist.




Confidence Intervals: Step Two

* Recall: p is our point-estimate for the
population proportion

p(1-p)
n

when we don’t

e Recall we consider\/

know p for the standard error as p can
estimate the value of p



Confidence Intervals: Step Two

* P is our point-estimate for the population
proportion

— Our ‘best” guess for the true population
proportion, p, is our sample proportion, p.



Confidence Intervals: Step Two

. z(l_g)\/(ﬁ(l_ﬁ)) is our margin of error

* z,_ais the confidence coefficient and is the z
2

value such that P (Z < Z(1—%)) — 1 — %

. \/ (p(ln_p)) is the estimated standard deviation



Confidence Intervals — Step Two

e The most common values of Z are listed below
— Level of confidence = (1-) * 100%
— Error Probability = « = 1- Level of confidence

1.645 1.644854
.95 .05 1.96 1.959964
.99 .01 2.58 2.57829

— Our interval will get larger when the margin of error
Increases

1) When we increase confidence = increase z = widen interval
2) When we decrease confidence = decrease z = narrow interval



Confidence Intervals: Step Two

. (p(1-D)) . :
Z(1—%)\/ —Is our margin of error

— As n increases, the margin of error decreases
causing the width of the confidence interval to
narrow

— As n decreases, the margin of error increases
causing the width of the confidence interval to
grow wider



Confidence Intervals: Margin of Error

. (p(1-D)) . :
Z(1—%)\/ —Is our margin of error

— As the confidence level decreases, z decreases
causing the margin of error to decrease, causing
the width of the confidence interval to narrow

— As the confidence level increases, z increases
causing the margin of error to increase, causing
the width of the confidence interval to grow wider



Confidence Intervals — Step Two

* A fishing metaphor:
— As n increases =2 confidence interval narrows
— As n decreases—> confidence interval widens

— Think about fishing in a pond with a net. If there are
more fish you can use a smaller net to catch the fish.

— In our case, when our sample size is larger we can use a
smaller interval to catch our parameter.



Confidence Intervals — Step Two

* A fishing metaphor:
— Increase confidence = confidence interval narrows
— Decrease confidence = confidence interval widens

— Think about fishing in a pond with a net. We want to be
more certain that we’ll catch a fish we need a bigger net.

— In our case, when we increase confidence to be more
certain that we’ll catch the parameter, we need a bigger
interval.



Confidence Intervals Bounds

R (p(1 —p))
P . Z(l_%)\l n

Lower Bound = p — za \/ (ﬁ(ln‘ﬁ))
2

Upper Bound =p + Zg\/(ﬁ(ln‘ﬁ))
2



Confidence Intervals Bounds

(p(1 —p))
\l n

N[

“We are --% confident that the true population
proportion, p, is between the lower bound and
upper bound.”




Confidence Intervals
A

/

th
——) percentile

th
( %) percentile

! | =] ).

Lower Bound Upper Bound

e \We choose our values such that

— Our point estimate is the mean, the 50" percentile

. ath :
— Our lower bound is the > percentile

th
— Our upper bound is the 1-% percentile



How We Found the Common Z’s: 90%

( ) percentll/ \ 1—%)th percentile

a

mten/al
Lower Bound Upper Bound

For a 90% confidence interval upper bound, we need

to find the z with a percentile of

, 0(_1 1—confidence_1 1—.90_1 .10_9500
2 2 - 2 2

If we look this up in the z-table we see that a z-score
between 1.64 or 1.65 gives us a value very close to
9500 - 1.645




How We Found the Common Z’s: 90%

/
\(1 ——) percentile
4

|0 ). a
interval

Lower Bound Upper Bound

For a 90% confidence interval upper bound, we

need to find the z with a percentile of
, ax , 1 —confidence , 1-.90 , 10 5500
2 2 B 2 2

To look this up in R: gnorm(.9500,0,1)=1.644854

) percentile

(3




How We Found the Common Z’s: 90%

Lower Bound: If we look this up in the z-table we
see that a z-score between -1.65 or -1.64 gives us a
value very close to .0500

Upper Bound: If we look this up in the z-table we
see that a z-score between 1.65 or 1.64 gives us a
value very close to .9500

Since it’s in the middle we average 1.64 and 1.65

This is why we have plus or minus z=1.645 for a
90% confidence interval



How We Found the Common Z’s: 95%

( ) percentll/ \ 1—%)th percentile

a

mten/al
Lower Bound Upper Bound

* For a 95% confidence interval upper bound, we

need to find the z with a percentile of

, ax , 1 —confidence , 1-95 , .05 9750
2 2 B 2 2
* If we look this up in the z-table we see that a z-

score of 1.96 gives us a value very close to .9750




How We Found the Common Z’s: 95%

/
\(1 ——) percentile
4

|0 ). a
interval

Lower Bound Upper Bound

For a 95% confidence interval upper bound, we

need to find the z with a percentile of
, - , 1 —confidence , 1-95 , .05 9750
2 2 B 2 2

To look this up in R: gnorm(.9750,0,1)=1.959964




How We Found the Common Z’s: 95%

 Lower Bound: If we look this up in the z-table we
see that a z-score of -1.96 gives us a value very
close to .0250

 Upper Bound: If we look this up in the z-table we
see that a z-score of 1.96 gives us a value very
close to .9750

* This is why we have plus or minus z=1.96 for a 95%
confidence interval



How We Found the Common Z’s: 99%

( ) percentll/ \ 1—%)th percentile

a

mten/al
Lower Bound Upper Bound

* For a 99% confidence interval upper bound, we

need to find the z with a percentile of

, ax , 1 —confidence , 1-99 , 01 9950
2 2 B 2 2
* If we look this up in the z-table we see that a z-

score of 2.58 gives us a value very close to .9950




How We Found the Common Z’s: 99%

/
\(1 ——) percentile
4

|0 ). a
interval

Lower Bound Upper Bound

For a 99% confidence interval upper bound, we

need to find the z with a percentile of
, ax , 1 —confidence , 1-99 , 01 9950
2 2 B 2 2

To look this up in R: gnorm(.9500,0,1)=2.575829




How We Found the Common Z’s: 99%

 Lower Bound: If we look this up in the z-table we
see that a z-score of -2.58 gives us a value very
close to .0500

 Upper Bound: If we look this up in the z-table we
see that a z-score of 2.58 gives us a value very
close to .9500

* This is why we have plus or minus z=2.58 for a 99%
confidence interval



How We Find an Uncommon /: 98%

( ) percentll/ \ 1—%)th percentile

a

mten/al
Lower Bound Upper Bound

* For a 98% confidence interval lower bound, we need

to find the z with a percentile of

, ax , 1 —confidence , 1-.98 , 02 9900
2 2 - 2 2
* If we look this up in the z-table we see that a z-score

of 2.33 gives us a value very close to .9900




How We Found the Common Z’s: 98%

/
\(1 ——) percentile
4

|0 ). a
interval

Lower Bound Upper Bound

For a 98% confidence interval upper bound, we

need to find the z with a percentile of
, ax , 1 —confidence , 1-98 , 02 9900
2 2 B 2 2

To look this up in R: gqnorm(.9900,0,1)=2.326348




How We Found the Common Z’s: 98%

 Lower Bound: If we look this up in the z-table we
see that a z-score of -2.33 gives us a value very
close to .0100

 Upper Bound: If we look this up in the z-table we
see that a z-score of 2.33 gives us a value very
close to .9900

* This is why we have plus or minus z=2.33 for a 98%
confidence interval



Examples



Example

A random sample of MLB home games showed
that the home teams won 1335 of 2429 games.

: ~ 1335
Our sample proportion=p = ~270 .5496
We should know this is a proportion problem
because we’re considering a qualitative

(categorical) random variable

Find the 95% confidence interval for the
population proportion



Example

* Step One:

* Check Assumptions:
e n*P = 2429 *.5496 = 1334.9784 > 15
e n*(1—p) = 2429 *.4504 = 1094.0216 > 15

* Thus, it is safe to assume the distribution of p has a bell
shaped distribution

* The data is from a random sample



Example

* Step Two:
* 95% Cl:

(p(1 —p))
\ n

5496 £ (1.96) 5496(.4504)
- | 2429

= (.5298,.5694)

Pt za
2

 We are 95% confident that the true population proportion
of home team wins is between 52.98 and 56.94 percent.



Example

* A random sample of MLB home games showed
that the home teams won 1335 of 2429 games.

e 95% CI:
(.5298,.5694)

e We see here that there is a small home field
advantage because all of the values in our 95% CI
are above 0.5.

— We know that 0.5 is interesting because it means
more than half the time or most



Example

 Arandom sample of MLB home games showed that
the home teams won 1335 of 2429 games.

e 99% ClI:

(1 -p)
V n
549 + (2.58) \/ 549(45” — (.5236, .5756)

* We are 99% confident that the true population
proportion of home team wins is between 52.36 and
57.56 percent.

pt

a
2




Example

* Arandom sample of MLB home games
showed that the home teams won 1335 of
2429 games.

* 99% Cl:
(.5236, .5756)

e Still, we see here that there is a small home
field advantage but we note the interval is
larger



Wilson’s Adjustment for Estimating p

* Wilson’s Adjustment is a nice trick to ‘correct’
our confidence interval when n isn’t extremely
large and performs poorly when p is nearOor 1

3 (P(1—p))

i\l n

* Wherep = %i is the adjusted proportion of

observations



Example

Let’s complete our previous example about MLB
home games with Wilson’s Adjustment this time

— The only difference here will be how we calculate the
.o~ Xt2, A X
sample proportion: p = — instead of p = -
— Note: we shouldn’t see a drastic change because we
aren’t in the case where n isn’t extremely large and

performs poorly when p isnear O or 1



Example

A random sample of MLB home games showed
that the home teams won 1335 of 2429 games.

Our sample proportion =p = ;izz:i = .5495

We should know this is a proportion problem
because we’re considering a qualitative
(categorical) random variable

Find the 95% confidence interval for the
population proportion



Example

* Step One:

* Check Assumptions:
e n*P = 2429 *.5496 = 1334.9784 > 15
e n*(1—p) = 2429 *.4504 = 1094.0216 > 15

* Thus, it is safe to assume the distribution of p has a bell
shaped distribution

* The data is from a random sample



Example

* Step Two:
* 95% Cl:

(1 —p))
\ n

5495 + (1.96) .5495(.4505)
- \ 2429

= (.5297,.5693)

pxza
2

 We are 95% confident that the true population proportion
of home team wins is between 52.97 and 56.93 percent.



Example

* A random sample of MLB home games showed
that the home teams won 1335 of 2429 games.

e 95% CI:
(.5297,.5693)

e We see here that there is a small home field
advantage because all of the values in our 95% CI
are above 0.5.

— We know that 0.5 is interesting because it means
more than half the time or most



Example in R

Below is a function you can load into R:

prop.int<-function(conf.level, x, n, Wilson=FALSE){
if(Wilson){
phat=(x+2)/(n+4)
lelse{
phat=x/n
}
z.crit = gnorm(1-(1-conf.level)/2);
std.error = sqrt(phat*(1-phat)/n);
MOE=z.crit*std.error;
c(phat-MOE, phat+MOE)



Example in R

* You can call the function as below which will
provide the 95% confidence interval for a

population proportion from a sample where

1335 of 2429 games were won from the home
team:

prop.int(.95, 1335, 2429 ,Wilson=FALSE)
OR with Adjustment
prop.int(.95, 1335, 2429,Wilson=TRUE)



Determining the Sample Size

e Say we want to set sampling error at SE with
100(1 — a)% confidence:

Solve forn: n=

Note: n is maximized for p=.5



Recall Sampling Distributions for
Sampling Means

* The mean of the sampling distribution for a
sample mean
Hax
= the mean of all possible sample means
= U, = the population mean

* The standard error, the standard deviation of
all sample means, is:

Ox =

Bifs



Confidence Intervals
For the Population Mean

 When we talk about confidence intervals for
the population mean we have two approaches

1. When we know o, (we are rarely in this case)
2. When we don’t know g,



Confidence Intervals When We Know o,

 We use our sample means to make inference
on the population mean

__I_ Ux
X T Z, al|—
=2 \\Jn

* X is our point-estimate for the population
mean

Ox
* 7 « is our margin of error
1-& (\/ﬁ) &

2



Confidence Intervals When We Know o,

* X is our point-estimate for the population
mean

— Our ‘best’ guess for the true population, mean is
our sample mean



Confidence Intervals: Margin of Error
When We Know g,

o . .
* Za (—x)IS our margin of error
2 \Wn

— As n increases, (

Ox

yn
margin of error to decrease causing the width of

the confidence interval to narrow

) decreases, causing the

0} . .
— As n decreases, (\/—%) increases, causing the

margin of error to increase causing the width of
the confidence interval to widen



Confidence Intervals: Margin of Error
When We Know g,

o . .
* Za (—x) is our margin of error
2 \Wn

— As the confidence level decreases, z decreases
causing the margin of error to decrease, causing
the width of the confidence interval to narrow

— As the confidence level increases, z increases
causing the margin of error to increase, causing
the width of the confidence interval to grow wider



Confidence Intervals Bounds
When We Know o,

Lower Bound = x — Z% (3—%)
Upper Bound = % + za (ﬁ)
pper Bound = x + ZE Tn

We are --% confident that the true population
mean, (U, is between the lower and upper bound.

Note: there’s an incredible likeliness to confidence
intervals for proportions



Confidence Intervals Bounds
When We Know g, - R code

Below is a function you can load into R:

z.int<-function(conf.level, xbar, sigma, n){
z.crit = gnorm(1-(1-conf.level)/2);
std.error = sigma/sqrt(n);
MOE=z.crit*std.error;
c(xbar-MOE, xbar+MOE)

}



Confidence Intervals Bounds
When We Know g, - R code

* You can call the function as below which will provide
the 95% confidence interval for a population mean
from a sample of 3 that had mean 5 and known
population standard deviation 3:

conf.level=.95 #Confidence Level

xbar=5 #Sample Mean

sigma=2 #Population Standard Deviation
n=3 #Sample Size

z.int(conf.level, xbar, sigma, n)



Determining the Sample Size

e Say we want to set sampling error at SE with
100(1 — a)% confidence:

2eL. #(1-9) (%) = ok

Solve forn: n=




Confidence Intervals Bounds
When We Don’t Know o,

* Now, onto the more realistic situation where
we don’t know the population standard
deviation.



Confidence Intervals
When We Don’t Know o,

 We use our sample means to make inference
on the population mean

— Sx
X t(l—%,n—l) (ﬁ)

* X is our point-estimate for the population
mean

. t( x ) (j—’%) is our margin of error

1—5,71—1

— s, is the sample standard deviation



Confidence Intervals
When We Don’t Know o,

* X is our point-estimate for the population
mean

— Our ‘best’ guess for the true population, mean is
our sample mean



Confidence Intervals: Margin of Error
When We Don’t Know o,

J t(l—zn 1) (j_) IS our margln of error

— As n increases, t decreases and ( ) decreases,

Vn
causmg the margln of error to decrease causmg

the width of the confidence interval to narrow

Sx) increases
Vn ’

causing the margin of error to increase causing
the width of the confidence interval to widen

— As n decreases, t increases and (



Confidence Intervals: Margin of Error
When We Don’t Know o,

. t( x ) (j—’%) is our margin of error

1—5,71—1

— As the confidence level decreases, t decreases
causing the margin of error to decrease, causing
the width of the confidence interval to narrow

— As the confidence level increases, t increases
causing the margin of error to increase, causing
the width of the confidence interval to grow wider



Confidence Intervals Bounds
When We Don’t Know o,

Lower Bound = x — t(l_gn_l) (j—%)
>

Upper Bound = x + t(l_fn—l) (j_xﬁ)
>

 We are --% confident that the true population
mean, [y, is between the lower and upper
bounds.



Confidence Intervals
When We Don’t Know o,

 tis based on the t distribution which is a lot
like the normal distribution but with fatter
tails

— You can find the correct t-value by finding the
cross-hair of degrees of freedom, n-1, and the two

tailed alpha
— http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf



http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

Finding t for Our Confidence Intervals

e Say we were trying to find the t-value for a
95% confidence with n=10

e Thismeansa =1 — .95 = .05 and the
degrees of freedom=10-1=9

= 2.262

* £ .05
1737

cum. prob t 5o tys t 20 tas t g0 tss t ars tos t s9s t 9ss t ss0s
one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005|

two-tails_' 1.00 0.50 0.40 0.30 0.20 0.10 0.05 B 0.02 0.01 0.002 0.001

df

1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

2 0.000 0.816 1.061 1.386 1.886 2.920 4303 6.965 9.925 22.327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924

4 0.000 0.741 0.941 1.190 1.533 2.132 2776 3.747 4.604 7.173 8.610

5 0.000 0.727 0.920 1.156 1.476 2.015 2571 3.365 4.032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2447 3.143 3.707 5.208 5.959

7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4785 5.408

8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 c 2.896 3.355 4501 5.041

A 9] 0.000 0.703 0.883 1.100 1.383 1.833 2262 2821 3.250 4297 4781
U.ouu 0.700 0.879 1.083 1372 1.812 2228 2764 3.169 4144 4.587

1U|



oom In

cum. prob t 50 tys t a0 tas ) tss t ors tes t s0s t 9ss t 08
one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005|
two-tails_' 1.00 0.50 0.40 0.30 0.20 0.10 0.05 B 0.02 0.01 0.002 0.001
df
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9925 22327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4 541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.180 1.533 2.132 2776 3.747 4604 T.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4501 5.041

A 9] 0.000 0.703 0.883 1.100 1.383 1.833 2262 2821 3.250 4297 4.781
W vow 0.700 0.879 1.083 1.372 1.812 2228 2764 3.169 4144 4.587

* Aisthe degrees of freedom, n-1

* Bis the significance level — for confidence
intervals we look for  in the two-tail row

* Cisthe t-value associated with the provided
degrees of freedom and significance level



Finding t for Our Confidence Intervals

e Say we were trying to find the t-value for a

99% confidence with n=9

* Thismeansa = 1 —.99 = .01 and the
degrees of freedom=9-1=8

=3.355

* T .01
1-218
2

cum. prob tso trs t a0 tas t o0 tss tars o t s9s t 999 t s90s
one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005|

two-tails_‘ 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 B0.00Z 0.001

df

1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

2 0.000 0.816 1.061 1.386 1.886 2.920 4303 6.965 9.925 22.327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4 541 5.841 10.215 12.924

4 0.000 0.741 0.941 1.190 1.533 2.132 2776 3.747 4.604 7.173 8.610

5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2447 3.143 3.707 5.208 5.959

7 N non n711 N !R98 1119 1415 1 RG5 2 3RR” 2998 3499 4 788 540K

A 8l 0000 0706 0889 1108 1397 1.860 2306 2896 3355 (C 4501 5041
9 0.000 0.703 0.883 1.100 1.383 1.833 2262 2821 3.250 4297 4781

10 0.000 0.700 0.879 1.093 1372 1.812 2.228 2764 3.169 4144 4 587




Zoom In

cum. prob t s s t 20 fas tas t ars tes t 298 t 9ss t ss0s

one-tail 0.50 0.25 0.20 0.15 0.1 0 0.05 0.025 0.01 0.005 0.001 0.0005

two-tails 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 B0.002 0.001
df‘

1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

2 0.000 0.816 1.061 1.386 1.886 2.920 4303 6.965 9925 22327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4 541 5.841 10.215 12.924

4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2447 3.143 3.707 5.208 5.959

7 nnon n711 N !R98 1119 1415 1 RAQ5 ? 3RR 29498 3499 4 7858 540K

A 8] 0000 0706 0889 1108 1397 1.860 2306 2896 3355 (C 4501  5.041

9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4297 4781

10| 0.000 0.700 0.879 1.093 1372 1.812 2.228 2.764 3.169 4144 4 587

* Aisthe degrees of freedom, n-1

B is the significance level — for confidence
intervals we look for  in the two-tail row

* Cisthe t-value associated with the provided
degrees of freedom and significance level



Finding t for Our Confidence Intervals

e Say we were trying to find the t-value for a
90% confidence with n=11

e Thismeansa =1 —.90 = .10 and the

degrees of freedom=11-1=10

e t 10, =1.812
1—10

2

cum. prob t s s t a0 tas t g0 tas tors e t 995 t sss T 2908

one-tail 0.50 0.25 0.20 0.15 0.10 0.05 _0.025 0.01 0.005 0.001 0.0005

two-tails 1.00 0.50 0.40 0.30 0.20 0.10 B 0.05 0.02 0.01 0.002 0.001
dfq

1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

2 0.000 0.816 1.061 1.386 1.886 2.920 4303 6.965 9.925 22327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4. 541 5.841 10.215 12.924

4 0.000 0.741 0.941 1.190 1.533 2.132 2776 3.747 4,604 7.173 8.610

5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2447 3.143 3.707 5.208 5.959

7 0.000 0.71 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4785 5408

8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4501 5.041

Q 0000 n7n3 0 ’KR3 1100 1383 1 R33 7 262 2821 3 250 4297 4 7R1

A 10| 0.000 0.700 0.879 1.093 1.372 1.812 C 2.228 2.764 3.169 4144 4 587



Zoom In

cum. prob t s tys t 20 fas tas tars o t 995 t 999 t g0

one-tail 0.50 0.25 0.20 0.15 0.10 0.05 _0.025 0.01 0.005 0.001 0.0005

two-tails 1.00 0.50 0.40 0.30 0.20 0.10 B 0.05 0.02 0.01 0.002 0.001
df‘

1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

2 0.000 0.816 1.061 1.386 1.886 2.920 4303 6.965 9925 22327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4 541 5.841 10.215 12.924

4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2447 3.143 3.707 5.208 5.959

7 0.000 0.71 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4785 5.408

8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4501 5.041

Q 000N n7n3 0 RRA 1100 1 383 1 833 7 262 2 821 3250 4 297 4 781

A 10' 0.000 0.700 0.879 1.093 1.372 1.812 C 2.228 2.764 3.169 4144 4587

* Aisthe degrees of freedom, n-1

B is the significance level — for confidence
intervals we look for  in the two-tail row

* Cis the t-value associated with the provided

degrees of freedom and significance level



Confidence Interval Bounds
When We Don’t Know o,

— Sx
Xt tl—%,n—l N

- S
Lower Bound=x — t. « =
1--n—-1 \yn

S

Upper Bound=x + t, « (—x)

1——-n-1 \yn



Example

* Suppose a random sample of 38 yearly
average temperature measures in New Haven,
CT. Among the sampled years the sample
mean temperature was 51.0474 degrees

fahrenheit with a sample standard deviation
of 1.3112.

 Our sample mean =X =51.0474
* Our sample standard deviation=s, =1.3112



Example

* Suppose a random sample of 38 yearly
average temperature measures in New Haven,
CT. Among the sampled years the sample
mean temperature was 51.0474 degrees
Fahrenheit with a sample standard deviation
of 1.3112.

* Check Assumptions

= n>30so0 it is safe to assume the distribution of x is
bell-shaped

" The data is from a random sample



Example

* 95% Confidence Interval for population the
true population mean yearly average
temperature reading in New Haven is:

— Sx
XL 9551\ U
1.3112)

V38
(50.61752, 51.47728)

= 51.0474 + (2.021) (



Example

(50.61752, 51.47728)

e We are 95% confident that the true

population mean yearly average temperature

reading in New Haven is between 50.61752
and 51.47728 degrees Fahrenheit



Confidence Intervals Bounds
When We Don’t Know g, - R code

Below is a function you can load into R:

t.int<-function(conf.level, xbar, sx, n){
t.crit = gt(1-(1-conf.level)/2,n-1);
std.error = sx/sqrt(n);
MOE=t.crit*std.error;
c(xbar-MOE, xbar+MOE)

}



Confidence Intervals Bounds
When We Don’t Know g, - R code

* You can call the function as below which will provide
the 95% confidence interval for a population mean
from a sample of 38 that had mean 51.0474 and
sample standard deviation 1.3112:

conf.level=.95 #Confidence Level
Xxbar=51.0474 #Sample Mean
sx=1.3112 #Sample Standard Deviation
n=38 #Sample Size

t.int(conf.level, xbar, sx, n)



100(1 — a)% Confidence Interval for ¢*

e Recall: X2_, = ((n—12)52)

Ox

* If we choose Xé such that P (X?“l = Xé) B %
2

2

and Xl_g such that P ()(,%_1 = )(f_g) = %then
2

we have P ()(a < y2_ ;< )(1__) =1—a



100(1 — a)% Confidence Interval for ¢*

 Recall: X4_; =

(
p (X%Z < ((n—lz)sz) - Xlz_%)
P

Ox




100(1 — a)% Confidence Interval for ¢*

* Assumptions are:
— The sample is selected from the target population

— The population of interest has a relative frequency
distribution that is approximately normal

—1 2 —1 2
(nz)s 30§s(n )s

2
X _«a Xa
2 2




100(1 — a)% Confidence Interval for o

 We can take the square root of all sides to get a
confidence interval for o

(n —1)s?

Xa



100(1 — a)% Confidence Interval
for o - R code

Below is a function you can load into R:

var.int<-function(conf.level, sx, n){
chisq.critL = gchisq(1-(1-conf.level)/2,n-1);
chisq.critU = gchisq((1-conf.level)/2,n-1);
lower=(n-1)*(sx"2)/chisq.critL
upper=(n-1)*(sx"2)/chisq.critU
c(lower,upper)

J



100(1 — a)% Confidence Interval
for o - R code

* You can call the function below which will provide the 95%
confidence interval for a population variance from the New
Haven temperature data from sample of 38 that had mean
51.0474 and sample standard deviation 1.3112:

conf.level=.95 #Confidence Level
sx=1.3112 #Sample Standard Deviation
n=38 #Sample Size

var.int(conf.level, sx, n)

Answer: (1.142705, 2.877642)

We are 95% confident that the true population variance is
between 1.142705 and 2.877642)



100(1 — a)% Confidence Interval
for o - R code

Below is a function you can load into R:

sd.int<-function(conf.level, sx, n){
chisq.critL = gchisq(1-(1-conf.level)/2,n-1);
chisq.critU = gchisq((1-conf.level)/2,n-1);
lower=sqrt((n-1)*(sx"2)/chisq.critL)
upper=sqrt((n-1)*(sx”2)/chisq.critU)
c(lower,upper)

J



100(1 — a)% Confidence Interval
for o - R code

* You can call the function below which will provide the 95%
confidence interval for a population standard deviation
from the New Haven temperature data from sample of 38
that had mean 51.0474 and sample standard deviation
1.3112:

conf.level=.95 #Confidence Level
sx=1.3112 #Sample Standard Deviation
n=38 #Sample Size

sd.int(conf.level, sx, n)

Answer: (1.068974, 1.696361)

We are 95% confident that the true population variance is
between 1.068974 and 1.696361



100(1 — a)% Confidence Interval
for o2/ ay

* If we choose Fa such that P(Fn ~1n,-1 S Fa) = E and

2

2
F1—% such that P(F “1ny—1 2 F1——) = = then we

have P(Fg < Fy-1n,-1 S F 1__) =1—-a
2



* Recall: ~1ny-1 =

100(1 — a)% Confidence Interval
for oZ/ ay




100(1 — a)% Confidence Interval
for o/ o

 We can take the square root of all sides to get a
confidence interval for o/ 0

N

2 2 2
Sy S O'_x S Sy
F « 0'3% F a

1=5 2



100(1 — a)% Confidence Interval
for o/ o

2
* |terpreting the confidence interval (%)
y
— If all values of the interval are bigger than one: o2 > 03%
— If all values of the interval are less than one: g <oy

— If the interval contains one it is possible that oy =0



100(1 — a)% Confidence Interval
for 0/ o;- R code

Below is a function you can load into R:

F.int<-function(conf.level, sx, nx, sy, ny){
sratio = sx"2/sy"2
F.critL = qf(1-(1-conf.level)/2,nx-1,ny-1);
F.critU = gf((1-conf.level)/2,nx-1,ny-1);
lower=sratio/F.critL
upper=sratio/F.critU
c(lower,upper)



100(1 — a)% Confidence Interval
for 0/ o;- R code

* You can call the function below which will provide the 95%
confidence interval for the ratios of the population variances from
two groups. Say we have a sample, X, of 32 that had sample
standard deviation 1.45 and a sample, Y, of 38 that had sample
standard deviation 1.57:

conf.level=.95 #Confidence Level
sx=1.45 #Sample Standard Deviation
nx=32

sy=1.57 #Sample Standard Deviation
ny=38

F.int(conf.level, sx, nx, sy, ny)

Answer: (.4338582,1.7125010) we are 95% confident that the ratio of
the population variances is between .4338582 and 1.7125010; 1 is on
the confidence interval, so it is possible that the variances are equal.



Summaries



Confidence Intervals

Point Margin of Error Margin of Error
Estimate

1. Random Sample

Za ) Za
And N\ N
n(l—-p) =15

 We are --% confident that the true population
proportion lays on the confidence interval.



Example in R

Below is a function you can load into R:

prop.int<-function(conf.level, x, n, Wilson=FALSE){
if(Wilson){
phat=(x+2)/(n+4)
lelse{
phat=x/n
}
z.crit = gnorm(1-(1-conf.level)/2);
std.error = sqrt(phat*(1-phat)/n);
MOE=z.crit*std.error;
c(phat-MOE, phat+MOE)



Confidence Intervals known o,

Point Margin of Error Margin of Error
Estimate

1. Random Sample

2 n > 30 OR the \/ﬁ x+Zczx [_n
population is bell
shaped

 We are --% confident that the true population
mean lays on the confidence interval.



Confidence Intervals Bounds
When We Know g, - R code

Below is a function you can load into R:

z.int<-function(conf.level, xbar, sigma, n){
z.crit = gnorm(1-(1-conf.level)/2);
std.error = sigma/sqrt(n);
MOE=z.crit*std.error;
c(xbar-MOE, xbar+MOE)

}



Confidence Intervals unknown o,

Point Margin of Margin of Error
Estimate | Error

1. Random Sample v
_|_ _—
2. n > 30 OR the \/ﬁ tl—i,n 1 /n
population is bell
shaped

 We are --% confident that the true population
mean lays on the confidence interval.



Confidence Intervals Bounds
When We Don’t Know g, - R code

Below is a function you can load into R:

t.int<-function(conf.level, xbar, sx, n){
t.crit = gt(1-(1-conf.level)/2,n-1);
std.error = sx/sqrt(n);
MOE=t.crit*std.error;
c(xbar-MOE, xbar+MOE)

}



Confidence Intervals unknown g,

Assumptions ___| Margin of Error

1. Random Sample ((Tl . 1)53%) Py ((Tl . 1)593)
=0 =

2. Data follows the 2

2
Normal Distribution X% Xl—%

 We are --% confident that the true population
variance lays on the confidence interval.



100(1 — a)% Confidence Interval
for o - R code

Below is a function you can load into R:

var.int<-function(conf.level, sx, n){
chisq.critL = gchisq(1-(1-conf.level)/2,n-1);
chisq.critU = gchisq((1-conf.level)/2,n-1);
lower=(n-1)*(sx"2)/chisq.critL
upper=(n-1)*(sx"2)/chisq.critU
c(lower,upper)

J



Confidence Intervals unknown g,

Assumptions ___| Margin of Error

1. Random Sample
2 2
n—ls) (n—ls)
2. Data follows the (( ) X <7< ( ) X
Normal Distribution 2 =0 = 2
Xa X _a
\ 2 \ 2

 We are --% confident that the true population
standard deviation lays on the confidence
interval.



100(1 — a)% Confidence Interval
for o - R code

Below is a function you can load into R:

sd.int<-function(conf.level, sx, n){
chisq.critL = gchisq(1-(1-conf.level)/2,n-1);
chisq.critU = gchisq((1-conf.level)/2,n-1);
lower=sqrt((n-1)*(sx"2)/chisq.critL)
upper=sqrt((n-1)*(sx”2)/chisq.critU)
c(lower,upper)

J



Confidence Intervals unknown g,

Assumptions ___| Margin of Error

1. Random Sampl
ample (53%) (59%
2. Data follows the 52 2 SZ
Normal Distribution Y < O-_x < y
F, «a 2 Fa

 We are --% confident that the true ratio of
population variances lays on the confidence
interval.



100(1 — a)% Confidence Interval
for o/ o

2
* |terpreting the confidence interval (%)
y
— If all values of the interval are bigger than one: o2 > 03%
— If all values of the interval are less than one: g <oy

— If the interval contains one it is possible that oy =0



100(1 — a)% Confidence Interval
for 0/ o;- R code

Below is a function you can load into R:

F.int<-function(conf.level, sx, nx, sy, ny){
sratio = sx"2/sy"2
F.critL = qf(1-(1-conf.level)/2,nx-1,ny-1);
F.critU = gf((1-conf.level)/2,nx-1,ny-1);
lower=sratio/F.critL
upper=sratio/F.critU
c(lower,upper)



