Stat 515: Introduction to Statistics

Chapter 7

Confidence Intervals

- Often, we do not know the population parameter, μ, ρ or σ_{x}
- We use our sample statistics, $\overline{\boldsymbol{x}}, \widehat{\boldsymbol{p}}, \boldsymbol{s}_{\boldsymbol{x}}$ to make inference on the population parameter, μ, ρ or σ_{x}

Confidence Intervals

- First, we will consider an interval estimate which we call a confidence interval
(This is our plus/minus from chapter 1)
point estimate \pm margin of error
$=$ point estimate $\pm\binom{$ confidence }{ coefficient }$*\binom{$ Standard }{ Error }

Telling Which Parameter We're After

- As statisticians, or data scientists, it's our job to hear a problem and decide what we're after
- We call the parameter of interest the target parameter

Parameter	Point Estimate	Key Phrase	Type of Data
μ	\bar{x}	Mean, Average	Quantitative
ρ	\hat{p}	Proportion, percentage, fraction, rate	Qualitative (Categorical)
σ^{2}	s_{x}^{2}	Variance, variability, spread	Quantitative

Confidence Intervals for Population Proportions on YouTube

- Intro:
- https://www.youtube.com/watch?v=3ReWri ih3M

Recall Sampling Distributions for Sampling Proportions

- Recall: the mean of the sampling distribution for a sample proportion will always equal the population proportion: $\boldsymbol{\mu}_{\hat{p}}=\boldsymbol{\rho}$
- The standard error, the standard deviation of the sample proportion, is:

$$
\sigma_{\hat{p}}=\sqrt{\frac{\rho(1-\rho)}{n}}
$$

Confidence Intervals: Step One

- Assumptions:

1. Data must be obtained through randomization
2. We MUST make sure that $n \hat{p} \geq 15$ and
$n(1-\hat{p}) \geq 15$. This ensures that \hat{p} follows a bell shaped distribution

- Recall Chapter 4 and the shape of the binomial dist.

Confidence Intervals: Step Two

- Recall: \hat{p} is our point-estimate for the population proportion
- Recall we consider $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ when we don't know ρ for the standard error as \hat{p} can estimate the value of ρ

Confidence Intervals: Step Two

- \hat{p} is our point-estimate for the population proportion
- Our 'best' guess for the true population proportion, ρ, is our sample proportion, \hat{p}.

Confidence Intervals: Step Two

- $Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$ is our margin of error
- $z_{1-\frac{\alpha}{2}}$ is the confidence coefficient and is the z value such that $P\left(Z<Z_{\left(1-\frac{\alpha}{2}\right)}\right)=1-\frac{\alpha}{2}$
- $\sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$ is the estimated standard deviation

Confidence Intervals - Step Two

- The most common values of Z are listed below
- Level of confidence $=(1-\propto) * 100 \%$
- Error Probability $=\propto=1$ - Level of confidence

Confidence	Error Probability (\propto)	$\mathbb{Z}_{\left(1-\frac{\alpha}{2}\right)}$	From Table
$\mathbb{Z}_{\left(1-\frac{\alpha}{2}\right)}$ From \mathbb{R}			
.9	.1	1.645	1.644854
.95	.05	1.96	1.959964
.99	.01	2.58	2.57829

- Our interval will get larger when the margin of error increases

1) When we increase confidence \rightarrow increase $z \rightarrow$ widen interval
2) When we decrease confidence \rightarrow decrease $z \rightarrow$ narrow interval

Confidence Intervals: Step Two

- $Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$ is our margin of error
- As \boldsymbol{n} increases, the margin of error decreases causing the width of the confidence interval to narrow
- As \boldsymbol{n} decreases, the margin of error increases causing the width of the confidence interval to grow wider

Confidence Intervals: Margin of Error

- $Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$ is our margin of error
- As the confidence level decreases, z decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
- As the confidence level increases, z increases causing the margin of error to increase, causing the width of the confidence interval to grow wider

Confidence Intervals - Step Two

- A fishing metaphor:
- As \mathbf{n} increases \rightarrow confidence interval narrows
- As \boldsymbol{n} decreases \rightarrow confidence interval widens
- Think about fishing in a pond with a net. If there are more fish you can use a smaller net to catch the fish.
- In our case, when our sample size is larger we can use a smaller interval to catch our parameter.

Confidence Intervals - Step Two

- A fishing metaphor:
- Increase confidence \rightarrow confidence interval narrows
- Decrease confidence \rightarrow confidence interval widens
- Think about fishing in a pond with a net. We want to be more certain that we'll catch a fish we need a bigger net.
- In our case, when we increase confidence to be more certain that we'll catch the parameter, we need a bigger interval.

Confidence Intervals Bounds

$$
\hat{p} \pm z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}
$$

Lower Bound $=\hat{p}-z \frac{\alpha}{2} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}$
Upper Bound $=\hat{p}+z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p}))}{n}}$

Confidence Intervals Bounds

$$
\hat{p} \pm \frac{\alpha}{2} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}
$$

"We are - \% confident that the true population proportion, ρ, is between the lower bound and upper bound."

Confidence Intervals

- We choose our values such that
- Our point estimate is the mean, the $50^{\text {th }}$ percentile
- Our lower bound is the $\frac{\alpha}{2}$ th percentile
- Our upper bound is the $1-\frac{\alpha^{t}}{2}$ percentile

How We Found the Common Z's: 90\%

Lower Bound
Upper Bound

- For a 90% confidence interval upper bound, we need to find the z with a percentile of

$$
1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.90}{2}=1-\frac{.10}{2}=.9500
$$

- If we look this up in the z-table we see that a z-score between 1.64 or 1.65 gives us a value very close to $.9500 \rightarrow 1.645$

How We Found the Common Z's: 90\%

- For a 90% confidence interval upper bound, we need to find the z with a percentile of
$1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.90}{2}=1-\frac{.10}{2}=.9500$
- To look this up in R: qnorm $(.9500,0,1)=1.644854$

How We Found the Common Z's: 90\%

- Lower Bound: If we look this up in the z-table we see that a z-score between -1.65 or -1.64 gives us a value very close to .0500
- Upper Bound: If we look this up in the z-table we see that a z -score between 1.65 or 1.64 gives us a value very close to .9500
- Since it's in the middle we average 1.64 and 1.65
- This is why we have plus or minus $\mathrm{z}=1.645$ for a 90\% confidence interval

How We Found the Common Z's: 95\%

Lower Bound

- For a 95\% confidence interval upper bound, we need to find the z with a percentile of
$1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.95}{2}=1-\frac{.05}{2}=.9750$
- If we look this up in the z-table we see that a zscore of 1.96 gives us a value very close to .9750

How We Found the Common Z's: 95\%

Lower Bound
Upper Bound

- For a 95% confidence interval upper bound, we need to find the z with a percentile of
$1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.95}{2}=1-\frac{.05}{2}=.9750$
- To look this up in R: qnorm $(.9750,0,1)=1.959964$

How We Found the Common Z's: 95\%

- Lower Bound: If we look this up in the z-table we see that a z -score of -1.96 gives us a value very close to 0250
- Upper Bound: If we look this up in the z-table we see that a z-score of 1.96 gives us a value very close to 9750
- This is why we have plus or minus $\mathrm{z}=1.96$ for a 95% confidence interval

How We Found the Common Z's: 99\%

Lower Bound

- For a 99\% confidence interval upper bound, we need to find the z with a percentile of
$1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.99}{2}=1-\frac{.01}{2}=.9950$
- If we look this up in the z-table we see that a zscore of 2.58 gives us a value very close to .9950

How We Found the Common Z's: 99\%

Lower Bound
Upper Bound

- For a 99% confidence interval upper bound, we need to find the z with a percentile of
$1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.99}{2}=1-\frac{.01}{2}=.9950$
- To look this up in R: qnorm $(.9500,0,1)=2.575829$

How We Found the Common Z's: 99\%

- Lower Bound: If we look this up in the z-table we see that a z-score of -2.58 gives us a value very close to 0500
- Upper Bound: If we look this up in the z-table we see that a z-score of 2.58 gives us a value very close to 9500
- This is why we have plus or minus $\mathrm{z}=2.58$ for a 99% confidence interval

How We Find an Uncommon Z: 98\%

Lower Bound
Upper Bound

- For a 98\% confidence interval lower bound, we need to find the z with a percentile of
$1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.98}{2}=1-\frac{.02}{2}=.9900$
- If we look this up in the z-table we see that a z-score of 2.33 gives us a value very close to .9900

How We Found the Common Z's: 98\%

Lower Bound
Upper Bound

- For a 98% confidence interval upper bound, we need to find the z with a percentile of
$1-\frac{\alpha}{2}=1-\frac{1-\text { confidence }}{2}=1-\frac{1-.98}{2}=1-\frac{.02}{2}=.9900$
- To look this up in R: qnorm $(.9900,0,1)=2.326348$

How We Found the Common Z's: 98\%

- Lower Bound: If we look this up in the z-table we see that a z -score of -2.33 gives us a value very close to 0100
- Upper Bound: If we look this up in the z-table we see that a z-score of 2.33 gives us a value very close to 9900
- This is why we have plus or minus $\mathrm{z}=2.33$ for a 98% confidence interval

Examples

Example

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- Our sample proportion $=\hat{p}=\frac{1335}{2429}=.5496$
- We should know this is a proportion problem because we're considering a qualitative (categorical) random variable
- Find the 95% confidence interval for the population proportion

Example

- Step One:
- Check Assumptions:
- $n * \hat{p}=2429 * .5496=1334.9784 \geq 15$
- $n *(1-\hat{p})=2429 * .4504=1094.0216 \geq 15$
- Thus, it is safe to assume the distribution of \hat{p} has a bell shaped distribution
- The data is from a random sample

Example

- Step Two:
- $95 \% \mathrm{Cl}$:

$$
\begin{gathered}
\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}} \\
\begin{aligned}
.5496 & \pm(1.96) \sqrt{\frac{.5496(.4504)}{2429}} \\
& =(.5298, .5694)
\end{aligned}
\end{gathered}
$$

- We are 95% confident that the true population proportion of home team wins is between 52.98 and 56.94 percent.

Example

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- $95 \% \mathrm{Cl}$:

$$
(.5298, .5694)
$$

- We see here that there is a small home field advantage because all of the values in our $95 \% \mathrm{Cl}$ are above 0.5.
- We know that 0.5 is interesting because it means more than half the time or most

Example

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- 99\% CI:

$$
\begin{gathered}
\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}} \\
.549 \pm(2.58) \sqrt{\frac{.549(.451)}{2429}}=(.5236, .5756)
\end{gathered}
$$

- We are 99\% confident that the true population proportion of home team wins is between 52.36 and 57.56 percent.

Example

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- 99\% Cl:
(.5236, .5756)
- Still, we see here that there is a small home field advantage but we note the interval is larger

Wilson's Adjustment for Estimating ρ

- Wilson's Adjustment is a nice trick to 'correct' our confidence interval when n isn't extremely large and performs poorly when ρ is near 0 or 1

$$
\tilde{p} \pm z_{\tilde{\alpha}} \sqrt{\frac{(\tilde{p}(1-\tilde{p}))}{n}}
$$

- Where $\tilde{p}=\frac{\mathrm{x}+2}{\mathrm{n}+4}$ is the adjusted proportion of observations

Example

- Let's complete our previous example about MLB home games with Wilson's Adjustment this time
- The only difference here will be how we calculate the sample proportion: $\tilde{p}=\frac{x+2}{n+4}$ instead of $\hat{p}=\frac{x}{n}$
- Note: we shouldn't see a drastic change because we aren't in the case where n isn't extremely large and performs poorly when ρ is near 0 or 1

Example

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- Our sample proportion $=\tilde{p}=\frac{1335+2}{2429+4}=.5495$
- We should know this is a proportion problem because we're considering a qualitative (categorical) random variable
- Find the 95% confidence interval for the population proportion

Example

- Step One:
- Check Assumptions:
- $n * \hat{p}=2429 * .5496=1334.9784 \geq 15$
- $n *(1-\hat{p})=2429 * .4504=1094.0216 \geq 15$
- Thus, it is safe to assume the distribution of \hat{p} has a bell shaped distribution
- The data is from a random sample

Example

- Step Two:
- $95 \% \mathrm{Cl}$:

$$
\begin{gathered}
\tilde{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{(\tilde{p}(1-\tilde{p}))}{n}} \\
\qquad \begin{array}{r}
.5495 \pm(1.96) \sqrt{\frac{.5495(.4505)}{2429}} \\
\\
=(.5297, .5693)
\end{array}
\end{gathered}
$$

- We are 95% confident that the true population proportion of home team wins is between 52.97 and 56.93 percent.

Example

- A random sample of MLB home games showed that the home teams won 1335 of 2429 games.
- $95 \% \mathrm{Cl}$:

$$
(.5297, .5693)
$$

- We see here that there is a small home field advantage because all of the values in our $95 \% \mathrm{Cl}$ are above 0.5.
- We know that 0.5 is interesting because it means more than half the time or most

Example in R

Below is a function you can load into R :

```
prop.int<-function(conf.level, x, n, Wilson=FALSE){
    if(Wilson){
        phat=(x+2)/(n+4)
    }else{
        phat=x/n
    }
    z.crit = qnorm(1-(1-conf.level)/2);
    std.error = sqrt(phat*(1-phat)/n);
    MOE=z.crit*std.error;
    c(phat-MOE, phat+MOE)
}
```


Example in R

- You can call the function as below which will provide the 95% confidence interval for a population proportion from a sample where $\mathbf{1 3 3 5}$ of $\mathbf{2 4 2 9}$ games were won from the home team:
prop.int(.95, 1335, 2429,Wilson=FALSE)
OR with Adjustment
prop.int(.95, 1335, 2429,Wilson=TRUE)

Determining the Sample Size

- Say we want to set sampling error at SE with $100(1-\alpha) \%$ confidence:

Set: $\quad Z_{\left(1-\frac{\alpha}{2}\right)} \sqrt{\frac{(\hat{p}(1-\hat{p}))}{n}}=S E$
Solve for $\mathrm{n}: \mathrm{n}=\frac{\left(z_{\left(1-\frac{\alpha}{2}\right)}^{2}(\hat{p}(1-\hat{p}))\right)}{S E^{2}}$

Note: n is maximized for $\hat{p}=.5$

Recall Sampling Distributions for Sampling Means

- The mean of the sampling distribution for a sample mean
$\mu_{\bar{x}}$
$=$ the mean of all possible sample means
$=\mu_{x}=$ the population mean
- The standard error, the standard deviation of all sample means, is:

$$
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}
$$

Confidence Intervals

For the Population Mean

- When we talk about confidence intervals for the population mean we have two approaches

1. When we know σ_{x} (we are rarely in this case)
2. When we don't know σ_{x}

Confidence Intervals When We Know σ_{x}

- We use our sample means to make inference on the population mean

$$
\bar{x} \pm Z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)
$$

- \bar{x} is our point-estimate for the population mean
- $z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{X}}{\sqrt{n}}\right)$ is our margin of error

Confidence Intervals When We Know σ_{x}

- \bar{x} is our point-estimate for the population mean
- Our 'best' guess for the true population, mean is our sample mean

Confidence Intervals: Margin of Error When We Know σ_{x}

- $Z_{\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ is our margin of error
- As n increases, $\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ decreases, causing the margin of error to decrease causing the width of the confidence interval to narrow
- As n decreases, $\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ increases, causing the margin of error to increase causing the width of the confidence interval to widen

Confidence Intervals: Margin of Error

 When We Know σ_{x}- $Z_{\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ is our margin of error
- As the confidence level decreases, z decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
- As the confidence level increases, z increases causing the margin of error to increase, causing the width of the confidence interval to grow wider

Confidence Intervals Bounds

 When We Know $\sigma_{x}$$$
\begin{aligned}
& \text { Lower Bound }=\bar{x}-z_{\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right) \\
& \text { Upper Bound }=\bar{x}+z_{\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)
\end{aligned}
$$

We are --\% confident that the true population mean, μ_{x}, is between the lower and upper bound.

Note: there's an incredible likeliness to confidence intervals for proportions

Confidence Intervals Bounds When We Know σ_{x} - R code

 Below is a function you can load into R :z.int<-function(conf.level, xbar, sigma, n)\{
z.crit = qnorm(1-(1-conf.level)/2);
std.error = sigma/sqrt(n);
MOE=z.crit*std.error;
c(xbar-MOE, xbar+MOE)
\}

Confidence Intervals Bounds When We Know σ_{x} - R code

- You can call the function as below which will provide the 95% confidence interval for a population mean from a sample of 3 that had mean 5 and known population standard deviation 3:
conf.level=. 95 \#Confidence Level
xbar=5 \#Sample Mean
sigma=2 \#Population Standard Deviation
n=3 \#Sample Size
z.int(conf.level, xbar, sigma, n)

Determining the Sample Size

- Say we want to set sampling error at SE with $100(1-\alpha) \%$ confidence:

Set: $\quad Z_{\left(1-\frac{\alpha}{2}\right)}\left(\frac{\sigma_{X}}{\sqrt{n}}\right)=S E$
Solve for $\mathrm{n}: ~ \mathrm{n}=\frac{\left(z_{\left(1-\frac{\alpha}{2}\right)}^{2}\left(\sigma_{x}\right)\right)}{S E^{2}}$

Confidence Intervals Bounds When We Don't Know σ_{x}

- Now, onto the more realistic situation where we don't know the population standard deviation.

Confidence Intervals When We Don't Know σ_{x}

- We use our sample means to make inference on the population mean

$$
\bar{x} \pm t_{\left(1-\frac{\alpha}{2}, n-1\right)}\left(\frac{s_{x}}{\sqrt{n}}\right)
$$

- \bar{x} is our point-estimate for the population mean
- $t_{\left(1-\frac{\alpha}{2}, n-1\right)}\left(\frac{s_{x}}{\sqrt{n}}\right)$ is our margin of error
$-s_{x}$ is the sample standard deviation

Confidence Intervals When We Don't Know σ_{x}

- \bar{x} is our point-estimate for the population mean
- Our 'best' guess for the true population, mean is our sample mean

Confidence Intervals: Margin of Error

 When We Don't Know σ_{x}- $t_{\left(1-\frac{\alpha}{2}, n-1\right)}\left(\frac{s_{x}}{\sqrt{n}}\right)$ is our margin of error
- As \mathbf{n} increases, t decreases and $\left(\frac{s_{x}}{\sqrt{n}}\right)$ decreases, causing the margin of error to decrease causing the width of the confidence interval to narrow
- As \boldsymbol{n} decreases, t increases and $\left(\frac{s_{x}}{\sqrt{n}}\right)$ increases, causing the margin of error to increase causing the width of the confidence interval to widen

Confidence Intervals: Margin of Error When We Don't Know σ_{x}

- $t_{\left(1-\frac{\alpha}{2}, n-1\right)}\left(\frac{s_{x}}{\sqrt{n}}\right)$ is our margin of error
- As the confidence level decreases, t decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
- As the confidence level increases, t increases causing the margin of error to increase, causing the width of the confidence interval to grow wider

Confidence Intervals Bounds

 When We Don't Know σ_{x} Lower Bound $=\bar{x}-t_{\left(1-\frac{\alpha}{2}, n-1\right)}\left(\frac{s_{x}}{\sqrt{n}}\right)$Upper Bound $=\bar{x}+t_{\left(1-\frac{\alpha}{2}, n-1\right)}\left(\frac{s_{x}}{\sqrt{n}}\right)$

- We are --\% confident that the true population mean, μ_{x}, is between the lower and upper bounds.

Confidence Intervals When We Don't Know σ_{x}

- t is based on the t distribution which is a lot like the normal distribution but with fatter tails
- You can find the correct t-value by finding the cross-hair of degrees of freedom, $\mathrm{n}-1$, and the two tailed alpha
- http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 95\% confidence with $\mathrm{n}=10$
- This means $\alpha=1-.95=.05$ and the degrees of freedom = 10-1 = 9
- $t_{1-\frac{.05}{2}, 9}=2.262$

cum. prob	$t_{\text {so }}$	$t_{.75}$	$t_{\text {s }}$	t_{35}	$t_{\text {. }}^{\text {g }}$	$t_{\text {g }}$	$t_{\text {g }}^{\text {g75 }}$	$t_{\text {ts }}$	$t_{\text {g95 }}$	$t_{\text {g99 }}$	$t_{\text {¢9995 }}$
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05 B	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
A 91	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
101	u.uvu	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

Zoom In

cum. prob	$t_{\text {. } 50}$	$t_{.75}$	$t_{\text {. } 80}$	$t_{\text {B5 }}$	$t_{\text {.90 }}$	$t_{\text {. }}^{\text {9 }}$	$t_{\text {. } 975}$	$t_{\text {t.99 }}$	$t_{\text {. } 995}$	$t_{\text {.999 }}$	$t_{\text {.9995 }}$
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05 B	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
A 91	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
101	v.uvu	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

- A is the degrees of freedom, $n-1$
- B is the significance level - for confidence intervals we look for α in the two-tail row
- C is the t -value associated with the provided degrees of freedom and significance level

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 99\% confidence with $\mathrm{n}=9$
- This means $\alpha=1-.99=.01$ and the degrees of freedom $=9-1=8$
- $t_{1-\frac{.01}{2}, 8}=3.355$

cum. prob	$t_{\text {s0 }}$	$t_{.75}$	$t_{\text {. }}$	t_{35}	$t_{\text {t }}^{30}$	$t_{\text {as }}$	$t_{\text {g75 }}$	t_{99}	$t^{\text {g95 }}$	t_{999}	$t_{\text {g }}^{\text {g995 }}$
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	B0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0 non	0711	ก 896	1119	1415	1895	2365	2998	3499	4785	5408
A81 	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	C 4.501	5.041
	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

Zoom In

- A is the degrees of freedom, $n-1$
- B is the significance level - for confidence intervals we look for α in the two-tail row
- C is the t -value associated with the provided degrees of freedom and significance level

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 90\% confidence with $\mathrm{n}=11$
- This means $\alpha=1-.90=.10$ and the degrees of freedom = 11-1 = 10
- $t_{1-\frac{10}{2}, 10}=1.812$

cum. prob	$t_{\text {s0 }}$	$t_{.75}$	$t_{\text {. }}^{\text {so }}$	t_{85}	$t_{\text {. } 90}$	$t_{\text {.95 }}$	t. 975	$t .99$	$t_{\text {, } 995}$	$t_{\text {g99 }}$	95
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	B 0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	ก.00n	0.703	ก 883	1.100	1.383	1833	2762	2821	3.250	4297	4.781
A 101	0.000	0.700	0.879	1.093	1.372	1.812	$\mathrm{C}_{2} 228$	2.764	3.169	4.144	4.587

Zoom In

$\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \\ \hline \end{array}$	$\begin{array}{r} t_{.50} \\ 0.50 \\ 1.00 \\ \hline \end{array}$	$\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \end{array}$	$\begin{array}{r} t_{.80} \\ 0.20 \\ 0.40 \\ \hline \end{array}$	$\begin{array}{r} t_{85} \\ 0.15 \\ 0.30 \end{array}$	$\begin{array}{r} t_{.90} \\ 0.10 \\ 0.20 \end{array}$	$\begin{array}{r} t_{.95} \\ 0.05 \\ 0.10 \end{array}$	$\mathrm{B}_{\substack{t_{.975} \\ 0.025}}$	$\begin{array}{r} t_{.99} \\ 0.01 \\ 0.02 \end{array}$	$\begin{array}{r} t_{\text {t.995 }} \\ 0.005 \\ 0.01 \end{array}$	$\begin{array}{r} t_{\text {.999 }} \\ 0.001 \\ 0.002 \end{array}$	$\begin{gathered} t_{\text {s999 }} \\ 0.0005 \\ 0.001 \end{gathered}$
df											
1 2	0.000 0.000	1.000 0.816	1.376 1.061	1.963 1.386	3.078 1.886	6.314 2.920	12.71 4.303	31.82 6.965	63.66 9.925	318.31 22.327	636.62 31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
- 9	ก 0 On	0703	$\bigcirc 883$	$1.10 n$	1.383	1833	2762	2871	3.350	4297	4781
A 101	0.000	0.700	0.879	1.093	1.372	1.812	C 2.228	2.764	3.169	4.144	4.587

- A is the degrees of freedom, $n-1$
- B is the significance level - for confidence intervals we look for α in the two-tail row
- C is the t -value associated with the provided degrees of freedom and significance level

Confidence Interval Bounds When We Don't Know σ_{x}

$$
\bar{x} \pm t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)
$$

Lower Bound $=\bar{x}-t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$
Upper Bound $=\bar{X}+t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$

Example

- Suppose a random sample of 38 yearly average temperature measures in New Haven, CT. Among the sampled years the sample mean temperature was 51.0474 degrees fahrenheit with a sample standard deviation of 1.3112 .
- Our sample mean $=\bar{x}=51.0474$
- Our sample standard deviation $=s_{x}=1.3112$

Example

- Suppose a random sample of 38 yearly average temperature measures in New Haven, CT. Among the sampled years the sample mean temperature was 51.0474 degrees Fahrenheit with a sample standard deviation of 1.3112 .
- Check Assumptions
- $\mathrm{n}>30$ so it is safe to assume the distribution of \bar{x} is bell-shaped
- The data is from a random sample

Example

- 95% Confidence Interval for population the true population mean yearly average temperature reading in New Haven is:

$$
\begin{gathered}
\bar{x} \pm t_{1-\frac{05}{2}, 38-1}\left(\frac{s_{x}}{\sqrt{n}}\right) \\
=51.0474 \pm(2.021)\left(\frac{1.3112}{\sqrt{38}}\right) \\
(50.61752,51.47728)
\end{gathered}
$$

Example

(50.61752, 51.47728)

- We are 95% confident that the true population mean yearly average temperature reading in New Haven is between 50.61752 and 51.47728 degrees Fahrenheit

Confidence Intervals Bounds

 When We Don't Know σ_{x} - R code Below is a function you can load into R :t.int<-function(conf.level, $x b a r, s x, n)\{$
t.crit $=\mathrm{qt}(1-(1-c o n f . l e v e l) / 2, \mathrm{n}-1)$;
std.error = sx/sqrt(n);
MOE=t.crit*std.error;
c(xbar-MOE, xbar+MOE)
\}

Confidence Intervals Bounds When We Don't Know $\sigma_{x}-\mathrm{R}$ code

- You can call the function as below which will provide the 95% confidence interval for a population mean from a sample of 38 that had mean 51.0474 and sample standard deviation 1.3112:
conf.level=. 95 \#Confidence Level
xbar=51.0474 \#Sample Mean
sx=1.3112 \#Sample Standard Deviation
n=38 \#Sample Size
t.int(conf.level, xbar, sx, n)

100 $(1-\alpha) \%$ Confidence Interval for σ^{2}

- Recall: $\mathrm{X}_{n-1}^{2}=\left(\frac{(n-1) s^{2}}{\sigma_{x}^{2}}\right)$
- If we choose $\chi_{\frac{\alpha}{2}}^{2}$ such that $P\left(\chi_{n-1}^{2} \leq \chi_{\frac{\alpha}{2}}^{2}\right)=\frac{\alpha}{2}$
and $\chi_{1-\frac{\alpha}{2}}^{2}$ such that $P\left(\chi_{n-1}^{2} \geq \chi_{1-\frac{\alpha}{2}}^{2}\right)=\frac{\alpha}{2}$ then
we have $P\left(\chi_{\frac{\alpha}{2}}^{2} \leq \chi_{n-1}^{2} \leq \chi_{1-\frac{\alpha}{2}}^{2}\right)=1-\alpha$

$100(1-\alpha) \%$ Confidence Interval for σ^{2}

- Recall: $\mathrm{X}_{n-1}^{2}=\left(\frac{(n-1) s^{2}}{\sigma_{x}^{2}}\right)$
$P\left(\chi_{\frac{\alpha}{2}}^{2} \leq\left(\frac{(n-1) s^{2}}{\sigma_{x}^{2}}\right) \leq \chi_{1-\frac{\alpha}{2}}^{2}\right)$

$$
=P\left(\frac{1}{\chi_{\frac{\alpha}{2}}^{2}} \geq\left(\frac{\sigma_{x}^{2}}{(n-1) s^{2}}\right) \geq \frac{1}{\chi_{1-\frac{\alpha}{2}}^{2}}\right)
$$

$$
=P\left(\frac{1}{\chi_{1-\frac{\alpha}{2}}^{2}} \leq\left(\frac{\sigma_{x}^{2}}{(n-1) s^{2}}\right) \leq \frac{1}{\chi_{\frac{\alpha}{2}}^{2}}\right)
$$

$$
=P\left(\frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}} \leq \sigma_{x}^{2} \leq \frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2}}^{2}}\right)
$$

100 $(1-\alpha) \%$ Confidence Interval for σ^{2}

- Assumptions are:
- The sample is selected from the target population
- The population of interest has a relative frequency distribution that is approximately normal

$$
\frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}} \leq \sigma_{x}^{2} \leq \frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2}}^{2}}
$$

100 $(1-\alpha) \%$ Confidence Interval for σ

- We can take the square root of all sides to get a confidence interval for σ

$$
\sqrt{\frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}}} \leq \sigma_{x}^{2} \leq \sqrt{\frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2}}^{2}}}
$$

100 $(1-\alpha) \%$ Confidence Interval for σ - R code

Below is a function you can load into R :

var.int<-function(conf.level, $s x, n)\{$ chisq.critL = qchisq(1-(1-conf.level)/2,n-1); chisq.critU = qchisq((1-conf.level)/2,n-1); lower=($n-1)^{*}\left(s x^{\wedge} 2\right) /$ chisq.critL
upper=($n-1)^{*}\left(s x^{\wedge} 2\right) /$ chisq.critU
c(lower,upper)

100(1- α)\% Confidence Interval for σ - R code

- You can call the function below which will provide the 95% confidence interval for a population variance from the New Haven temperature data from sample of 38 that had mean 51.0474 and sample standard deviation 1.3112:
conf.level=. 95 \#Confidence Level
sx=1.3112 \#Sample Standard Deviation
n=38 \#Sample Size
var.int(conf.level, sx, n)

Answer: (1.142705, 2.877642)
We are 95% confident that the true population variance is between 1.142705 and 2.877642)

$100(1-\alpha) \%$ Confidence Interval for σ - R code

Below is a function you can load into R :
sd.int<-function(conf.level, sx, n)\{ chisq.critL = qchisq(1-(1-conf.level)/2,n-1); chisq.critU = qchisq((1-conf.level)/2,n-1); lower=sqrt((n-1)*(sx^2)/chisq.critL) upper=sqrt((n-1)*(sx^2)/chisq.critU) c(lower,upper)

100 $(1-\alpha) \%$ Confidence Interval for σ - R code

- You can call the function below which will provide the 95% confidence interval for a population standard deviation from the New Haven temperature data from sample of 38 that had mean 51.0474 and sample standard deviation 1.3112:
conf.level=. 95 \#Confidence Level
sx=1.3112 \#Sample Standard Deviation
$\mathrm{n}=38$ \#Sample Size
sd.int(conf.level, sx, n)

Answer: (1.068974, 1.696361)
We are 95% confident that the true population variance is between 1.068974 and 1.696361

$100(1-\alpha) \%$ Confidence Interval

$$
\text { for } \sigma_{x}^{2} / \sigma_{y}^{2}
$$

- Recall: $F_{n_{x}-1, n_{y}-1}=\frac{\left(\frac{\left(s_{x}^{2}\right.}{s_{y}^{2}}\right)}{\left(\frac{\sigma_{2}^{2}}{\sigma_{y}^{2}}\right)}$
- If we choose $F_{\frac{\alpha}{2}}$ such that $P\left(F_{n_{x}-1, n_{y}-1} \leq F_{\frac{\alpha}{2}}\right)=\frac{\alpha}{2}$ and $F_{1-\frac{\alpha}{2}}^{2}$ such that $P\left(F_{n_{x}-1, n_{y}-1} \geq F_{1-\frac{\alpha}{2}}\right)=\frac{\alpha}{2}$ then we have $P\left(F_{\frac{\alpha}{2}} \leq F_{n_{x}-1, n_{y}-1} \leq F_{1-\frac{\alpha}{2}}\right)=1-\alpha$

$100(1-\alpha) \%$ Confidence Interval

 for $\sigma_{x}^{2} / \sigma_{y}^{2}$- Recall: $F_{n_{x}-1, n_{y}-1}=\frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right)}$

$$
\begin{aligned}
P\left(F_{\frac{\alpha}{2}} \leq \frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right)} \leq F_{1-\frac{\alpha}{2}}\right)=P\left(\frac{1}{F_{\frac{\alpha}{2}}} \geq \frac{\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right)}{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)} \geq \frac{1}{F_{1-\frac{\alpha}{2}}}\right) \\
=P\left(\frac{1}{F_{1-\frac{\alpha}{2}}} \leq \frac{\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right)}{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)} \leq \frac{1}{F_{\frac{\alpha}{2}}}\right)=\left(\frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{F_{1-\frac{\alpha}{2}}} \leq\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right) \leq \frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{F_{\frac{\alpha}{2}}^{2}}\right)=1-\alpha
\end{aligned}
$$

100(1- α)\% Confidence Interval

$$
\text { for } \sigma_{x}^{2} / \sigma_{y}^{2}
$$

- We can take the square root of all sides to get a confidence interval for $\sigma_{x}^{2} / \sigma_{y}^{2}$

$$
\frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{F_{1-\frac{\alpha}{2}}} \leq\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right) \leq \frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{F_{\frac{\alpha}{2}}}
$$

$100(1-\alpha) \%$ Confidence Interval

$$
\text { for } \sigma_{x}^{2} / \sigma_{y}^{2}
$$

- Iterpreting the confidence interval $\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right)$
- If all values of the interval are bigger than one: $\sigma_{x}^{2}>\sigma_{y}^{2}$
- If all values of the interval are less than one: $\sigma_{x}^{2}<\sigma_{y}^{2}$
- If the interval contains one it is possible that $\sigma_{x}^{2}=\sigma_{y}^{2}$

100 $(1-\alpha) \%$ Confidence Interval for $\sigma_{x}^{2} / \sigma_{y}^{2}$ - R code

Below is a function you can load into R :
F.int<-function(conf.level, sx, nx, sy, ny)\{
sratio $=s x^{\wedge} 2 / s y^{\wedge} 2$
F.critL $=q f(1-(1-c o n f . l e v e l) / 2, n x-1, n y-1)$;
F.critU = qf((1-conf.level)/2,nx-1,ny-1);
lower=sratio/F.critL
upper=sratio/F.critU
c(lower,upper)

$100(1-\alpha) \%$ Confidence Interval for $\sigma_{x}^{2} / \sigma_{y}^{2}$ - R code

- You can call the function below which will provide the 95% confidence interval for the ratios of the population variances from two groups. Say we have a sample, X , of 32 that had sample standard deviation 1.45 and a sample, Y , of 38 that had sample standard deviation 1.57:
conf.level=. 95 \#Confidence Level
sx=1.45 \#Sample Standard Deviation
$n x=32$
sy=1.57 \#Sample Standard Deviation
$n y=38$
F.int(conf.level, sx, nx, sy, ny)

Answer: $(.4338582,1.7125010)$ we are 95% confident that the ratio of the population variances is between . 4338582 and 1.7125010; 1 is on the confidence interval, so it is possible that the variances are equal.

Summaries

Confidence Intervals

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample 2. $n \hat{p} \geq 15$ And $n(1-\hat{p}) \geq 15$	\hat{p}	Z	$\frac{\hat{p}(1-\hat{p})}{2}$ $\frac{1}{n}$

- We are --\% confident that the true population proportion lays on the confidence interval.

Example in R

Below is a function you can load into R :

```
prop.int<-function(conf.level, x, n, Wilson=FALSE){
    if(Wilson){
        phat=(x+2)/(n+4)
    }else{
        phat=x/n
    }
    z.crit = qnorm(1-(1-conf.level)/2);
    std.error = sqrt(phat*(1-phat)/n);
    MOE=z.crit*std.error;
    c(phat-MOE, phat+MOE)
}
```


Confidence Intervals known σ_{x}

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample	\bar{X}	$\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}$	$\bar{x} \pm Z \frac{\alpha}{2}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$
2. $n>30$ OR the population is bell shaped			

- We are --\% confident that the true population mean lays on the confidence interval.

Confidence Intervals Bounds When We Know σ_{x} - R code

 Below is a function you can load into R :z.int<-function(conf.level, xbar, sigma, n)\{
z.crit = qnorm(1-(1-conf.level)/2);
std.error = sigma/sqrt(n);
MOE=z.crit*std.error;
c(xbar-MOE, xbar+MOE)
\}

Confidence Intervals unknown σ_{x}

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample	\bar{X}	$\sigma_{\bar{x}}=\frac{s_{x}}{\sqrt{n}}$	$\bar{x} \pm t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$
2. $n>30$ OR the population is bell shaped			

- We are --\% confident that the true population mean lays on the confidence interval.

Confidence Intervals Bounds

 When We Don't Know σ_{x} - R code Below is a function you can load into R :t.int<-function(conf.level, $x b a r, s x, n)\{$
t.crit $=\mathrm{qt}(1-(1-c o n f . l e v e l) / 2, \mathrm{n}-1)$;
std.error = sx/sqrt(n);
MOE=t.crit*std.error;
c(xbar-MOE, xbar+MOE)
\}

Confidence Intervals unknown σ_{x}

Assumptions
 Margin of Error

- We are --\% confident that the true population variance lays on the confidence interval.

100 $(1-\alpha) \%$ Confidence Interval for σ - R code

Below is a function you can load into R :

var.int<-function(conf.level, $s x, n)\{$ chisq.critL = qchisq(1-(1-conf.level)/2,n-1); chisq.critU = qchisq((1-conf.level)/2,n-1); lower=($n-1)^{*}\left(s x^{\wedge} 2\right) /$ chisq.critL
upper=($n-1)^{*}\left(s x^{\wedge} 2\right) /$ chisq.critU
c(lower,upper)

Confidence Intervals unknown σ_{x}

Assumptions

Margin of Error

1. Random Sample
2. Data follows the Normal Distribution

$$
\sqrt{\frac{\left((n-1) s_{x}^{2}\right)}{\chi_{\frac{\alpha}{2}}^{2}}} \leq \sigma \leq \sqrt{\frac{\left((n-1) s_{x}^{2}\right)}{\chi_{1-\frac{\alpha}{2}}^{2}}}
$$

- We are --\% confident that the true population standard deviation lays on the confidence interval.

$100(1-\alpha) \%$ Confidence Interval for σ - R code

Below is a function you can load into R :
sd.int<-function(conf.level, sx, n)\{ chisq.critL = qchisq(1-(1-conf.level)/2,n-1); chisq.critU = qchisq((1-conf.level)/2,n-1); lower=sqrt((n-1)*(sx^2)/chisq.critL) upper=sqrt((n-1)*(sx^2)/chisq.critU) c(lower,upper)

Confidence Intervals unknown σ_{x}

Assumptions
 Margin of Error

1. Random Sample
2. Data follows the Normal Distribution

$$
\frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{F_{1-\frac{\alpha}{2}}} \leq\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right) \leq \frac{\left(\frac{s_{x}^{2}}{s_{y}^{2}}\right)}{F_{\frac{\alpha}{2}}}
$$

- We are --\% confident that the true ratio of population variances lays on the confidence interval.

$100(1-\alpha) \%$ Confidence Interval

$$
\text { for } \sigma_{x}^{2} / \sigma_{y}^{2}
$$

- Iterpreting the confidence interval $\left(\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right)$
- If all values of the interval are bigger than one: $\sigma_{x}^{2}>\sigma_{y}^{2}$
- If all values of the interval are less than one: $\sigma_{x}^{2}<\sigma_{y}^{2}$
- If the interval contains one it is possible that $\sigma_{x}^{2}=\sigma_{y}^{2}$

100 $(1-\alpha) \%$ Confidence Interval for $\sigma_{x}^{2} / \sigma_{y}^{2}$ - R code

Below is a function you can load into R :
F.int<-function(conf.level, sx, nx, sy, ny)\{
sratio $=s x^{\wedge} 2 / s y^{\wedge} 2$
F.critL $=q f(1-(1-c o n f . l e v e l) / 2, n x-1, n y-1)$;
F.critU = qf((1-conf.level)/2,nx-1,ny-1);
lower=sratio/F.critL
upper=sratio/F.critU
c(lower,upper)

